Note: Calculators and the Internet were allowed in this meet.
April 7, 2022
Round 1: Arithmetic and Number Theory

1. For integers m and n, let the operations $*$ and \oplus be defined by $m * n=m^{2}+n^{2}$ and $m \oplus n=3 m+2 n$. Find $(\{5,6,7,8\} * 3) *(8 \oplus 7)$.
2. Find the number of perfect cubes between 1 and $\{800,000 ; 700,000 ; 500,000$; $400,000\}$ inclusive that are multiples of 12 .
3. Fifteen Yankees fans, $\{14,10,12,11\}$ Red Sox fans, and Joanne will stand in an orderly line at the stadium. If these $\{30,26,28,27\}$ people are arranged in the line at random, then the probability that Joanne is directly behind a Red Sox fan and directly in front of a Yankees fan is $\frac{a}{b}$, where a and b are relatively prime positive integers. Find $a+b$.

April 7, 2022
Round II: Algebra I (Real numbers and no transcendental functions)

1. Suppose that $\frac{b}{a}=\{3,4,5,6\}$ and $\frac{c}{b}=\{5,6,7,8\}$. Then $\frac{a+b}{b+c}=\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
2. Line l_{1} has slope 3 and intersects the x-axis at A. Line l_{2} has slope $\{-1.1,-1.2,-1.3,-1.4\}$ and intersects the x-axis at B. The point of intersection of l_{1} and l_{2} lies on the line $y=157$. Find the distance $A B$, giving your answer to the nearest integer.
3. Let f be the function defined by $f(x)=\left|x+\frac{1}{2}\right|+\left|x-\frac{1}{2}\right|$ and let $f^{2}(x)=f(f(x)), f^{3}(x)=f\left(f^{2}(x)\right)$, and so on. Find the area enclosed by the graph of $y=f^{8}(x)$ and the line $y=\{768,1792,2304,1280\}$.

April 7, 2022
Round III: Geometry (figures are not drawn to scale)

1. The volume of a rectangular solid A is 250 . Each dimension of A is increased by $\{80 \%, 60 \%, 40 \%, 20 \%\}$ to form a new solid B. Find the volume of B.
2. The points $A(0,0), B(\{8,6,4,10\}, 0), C(\{7,5,3,9\}, 1), D(1,1)$ are given. Suppose that the line $y=2(x-k)$ divides quadrilateral $A B C D$ into two equal areas. Then $k=\frac{a}{b}$, where a and b are relatively prime positive integers. Find $a+b$.
3. Let $A B C D$ be a square, with $A B=1$. Let M be the midpoint of side $\overline{A B}$ and let N be that point on side $\overline{D C}$ such that $D N=\left\{\frac{1}{9}, \frac{1}{5}, \frac{2}{7}, \frac{1}{7}\right\} D C$. Let P be the point of intersection of $\overline{M N}$ and $\overline{A C}$. The area of quadrilateral $M B C P$ is $\frac{a}{b}$, where a and b are relatively prime positive integers. Find $a+b$.

Round IV: Algebra II

1. For how many integers n, with $1 \leq n \leq 10,000$, is $\log _{\{5,6,7,8\}} n$ an integer?
2. Suppose that the polynomial $x^{2}-\{3 x, 2 x, 4 x, x\}+5$ divides the polynomial $x^{3}+a x^{2}+b x-15$, where a and b are constants. Find $a^{2}+b^{2}$.
3. Find the integer k, with $\{5000 \leq k \leq 6000,9000 \leq k \leq 10000,1000 \leq$ $k \leq 2000,2000 \leq k \leq 3000\}$, for which $x^{4}+k$ can be factored into two distinct trinomial factors with integer coefficients.

April 7, 2022
Round V: Analytic Geometry

1. If the points $(1, p)$ and $(-1, q)$ lie on the graph of $y=a x^{2}+b x+c$ and $p-q=\{6,8,10,12\}$, what is the value of b ?
2. The points $A(0,0), B(9,3)$, and $P(0, b), b>0$, are given. Let Q and R be the points on line segment $A B$ such that $A Q=R B=\frac{1}{3} A B$. Suppose that (slope of $\overline{P R}$) $=\left\{\frac{2}{7}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}\right\}$ (slope of $\overline{P Q}$). Then $b=\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
3. For any two real numbers p and q, the points $P\left(\{5,3,5,3\} p^{2},\{10,6,10,6\} p\right)$ and $Q\left(\{5,3,5,3\} q^{2},\{10,6,10,6\} q\right)$ lie on the parabola C_{1} with equation $y^{2}=\{20,12,20,12\} x$. Suppose now that p and q vary in such a way that $p q$ always equals -1 . Then the midpoint of line segment $P Q$ traces out a different parabola, C_{2}. The distance between the vertex and the focus of C_{2} is $\frac{a}{b}$, where a and b are relatively prime positive integers. Find $a+b$.
4. A vertical pole stands on horizontal ground. An ant is at ground level, 6 meters from the base of the pole. If the ant looks at a point A on the pole, the angle of elevation is 50°. If the ant looks at a point B on the pole, the angle of elevation is $\left\{65^{\circ}, 67^{\circ}, 69^{\circ}, 63^{\circ}\right\}$. Find the distance $A B$ in centimeters, to the nearest centimeter. (Do not attempt to include a unit in your answer.)
5. For two acute angles θ and $\phi, \sin \theta=\cos \phi$. If $\theta=4 k+22$ degrees and $\phi=6 k+\{13,12,14,10\}$ degrees, then $k=\frac{a}{b}$, where a and b are relatively prime positive integers. Find $a+b$.
6. Suppose that z is a complex number such that $|z|=1$ and $\arg z=\theta$ degrees, where $0 \leq \theta<180$. For how many integer values of θ is $(1+z)^{\{75,48,80,135\}}$ a real number?

April 7, 2022
Team Round

1. Find the sum of all integers between 100 and 999 whose digits are all even.
2. Water pipe A fills a storage tank in 8 hours. Water pipe B fills the same storage tank in 12 hours. The tank is empty at time $t=0$ hours, and at that time pipe A is turned on. Pipe B is turned on at $t=1.5$ hours (with pipe A continuing to pour water into the tank). The tank becomes full at time $t=\frac{a}{b}$ hours, where a and b are relatively prime positive integers. Find $a+b$.
3. A frustum of a cone has bases of radii 6 and 8 and a slant height of 5. The volume of the frustum is $\frac{\pi a \sqrt{b}}{c}$, where a, b, c are positive integers, a and c are relatively prime, and b is not divisible by the square of any prime number. Find $a+b+c$.
(Terminology: A frustum of a cone is the part of the cone lying below a plane parallel to the base of the cone. The slant height of the frustum is the smallest possible length of a line segment from a point on the perimeter of one base to a point on the perimeter of the other base.)
4. For how many real numbers x with $1 \leq x \leq 1,000,000$ is $\log _{2} x+\log _{3} x$ an integer?
5. Suppose that points A and B lie in two-dimensional space and that $A B=16$. Let the curve consisting of all points P such that $P A+P B=20$ be E. Let R be the point on line segment $A B$ such that $R B=3$, and let l be the line through R perpendicular to $\overline{A B}$. Line l intersects E at points S and T. Find $100(S T)$ to the nearest integer.
6. How many times does the graph of $y=\sin \left(\frac{1}{x}\right)$ intersect the x-axis between $x=0.002$ and $x=1$?
(Note: Since no unit of angles is given, the quantity $\frac{1}{x}$ is interpreted as being in radians.)

Answers

Round 1

1. $2600,3469,4808,6773$
2. $15,14,13,12$
3. $36,16,26,289$

Round 2

1. $11,33,23,61$
2. 195, 183, 173, 164
3. $2240,12480,20672,6336$

Team Round

1. 54400
2. 32
3. 172
4. 33
5. 1039
6. 159

Round 3

1. $1458,1024,686,432$
2. $19,15,11,23$
3. $141,73,95,107$

Round 4

1. $6,6,5,5$
2. $232,146,338,80$
3. $5184,9604,1024,2500$

Round 5

1. $3,4,5,6$
2. $13,11,17,23$
3. $7,5,7,5$

Round 6

1. $572,698,848,463$
2. $13,33,32,34$
3. $8,12,20,23$
