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I-1.   Let 𝑥 be the smallest positive integer such that 1584 · 𝑥 is a perfect cube, and let 𝑦 be the 
smallest positive integer such that 𝑥𝑦 is a multiple of 1584. Compute 𝑦.                                 [12] 
 
 
I-2.   In triangle 𝐴𝐵𝐶, 𝐶 is a right angle and 𝑀 is on 𝐴𝐶̅̅ ̅̅ . A circle with radius 𝑟 is centered at 
𝑀, is tangent to 𝐴𝐵̅̅ ̅̅ , and is tangent to 𝐵𝐶̅̅ ̅̅  at 𝐶. If AC = 5 and BC = 12, then 𝑟 = 𝑎

𝑏
 , where 𝑎 and 

𝑏 are relatively prime positive integers. Find 𝑎 + 𝑏.                        [17] 
 
 
I-3.   Some people at a meeting are men, and the rest are women. Selecting from the people at the 
meeting, there are exactly 25 ways to pick a group of three people that includes at least one 
person of each gender. Compute the number of people at the meeting.                                [7] 
 
 
I-4.  Regular hexagon 𝐴𝐵𝐶𝐷𝐸𝐹 and regular hexagon 𝐺𝐻𝐼𝐽𝐾𝐿 both have side length 24. The 
hexagons overlap, so that 𝐺 is on 𝐴𝐵̅̅ ̅̅ , 𝐵 is on 𝐺𝐻̅̅ ̅̅ , 𝐾 is on 𝐷𝐸̅̅ ̅̅ , and 𝐷 is on 𝐽𝐾̅̅ ̅.  
If [𝐺𝐵𝐶𝐷𝐾𝐿]  =  1

2
 [𝐴𝐵𝐶𝐷𝐸𝐹], compute 𝐿𝐹.            [18] 

 
 
I-5.   Let 𝑋 be the number of digits in the decimal expansion of 100100010,000 , and let 𝑌 be the 
number of digits in the decimal expansion of 100010,000100,000. Compute ⌊log𝑋 𝑌⌋.   
(Note:  ⌊𝑥⌋ is the greatest integer less than or equal to x.) [13] 
 
 
 
I-6    Define the sequence of positive integers {𝑎𝑛} as follows: 
 

{
𝑎1 = 1;

 for 𝑛 ≥ 2,  𝑎𝑛 is the smallest possible positive value of  𝑛 − 𝑎𝑘
2 ,  for 1 ≤ 𝑘 < 𝑛. 

 
For example, 𝑎2 = 2 − 12 = 1, and 𝑎3 = 3 − 12 = 2. Compute 𝑎1 + 𝑎2 + ⋯ + 𝑎50.           [253] 
 
 
 
I-7.   Let 𝐴 and 𝐵 be digits from the set {0, 1, 2, . . . , 9}. Let 𝑟 be the two-digit integer 𝐴 𝐵 and 
let 𝑠 be the two-digit integer 𝐵 𝐴, so that 𝑟 and 𝑠 are members of the set {00, 01, . . . , 99}. 
Compute the number of ordered pairs (𝐴, 𝐵) such that |𝑟 −  𝑠|  =  𝑘2 for some integer 𝑘.      [42] 
 
 
 
I-8.   The grid distance between points 𝐴 = (𝑥𝐴, 𝑦𝐴) and 𝐵 = (𝑥𝐵, 𝑦𝐵) is defined as 𝑑(𝐴, 𝐵) =
|𝑥𝐴 − 𝑥𝐵| + |𝑦𝐴 − 𝑦𝐵|. Given some 𝑠 > 0 and points 𝐴 = (𝑥𝐴, 𝑦𝐴) and 𝐵 = (𝑥𝐵, 𝑦𝐵), define the 



grid ellipse with foci 𝐴 = (𝑥𝐴, 𝑦𝐴) and 𝐵 = (𝑥𝐵, 𝑦𝐵)  to be the set of points {𝑄 | 𝑑(𝐴, 𝑄) +
𝑑(𝐵, 𝑄)  =  𝑠}. Compute the area enclosed by the grid ellipse with foci (0, 5) and (12, 0), 
passing through (1, −1).                                     [96] 
 
 
 
I-9.    For a positive integer 𝑛, let 𝐶(𝑛) equal the number of pairs of consecutive 1’s in the binary 
representation of 𝑛. For example, 𝐶(183)  =  𝐶(101101112)  =  3. Compute 𝐶(1)  +  𝐶(2)  +
𝐶(3)  + · · ·  + 𝐶(256).                        [448] 
 
 
I-10.   In the complex plane, 𝑧, 𝑧2, 𝑧3 form, in some order, three of the vertices of a non-
degenerate square. Let 𝑎 and 𝑏 represent the smallest and largest possible areas of the square, 
respectively. Compute  40(𝑎 + 𝑏). [425] 
 
  



Team Selection Test 2 
Solutions 

 
I-1.    Since 1584 ∙ 𝑥 is a perfect cube, and 1584 = 24 ∙ 32 ∙ 11, 𝑥 must be of the form 23𝑘+2 ∙
33𝑚+1 ∙ 113𝑛+2 ∙ 𝑟3, for some nonnegative integers 𝑘, 𝑚, 𝑛, 𝑟, 𝑟 > 0. Therefore, the least 
positive value of 𝑥 is 24 ∙ 32 ∙ 112 = 1452. In order for 𝑥𝑦 to be a multiple of 1548, 𝑥𝑦 must be 
of the form 2𝑎 ∙ 3𝑏 ∙ 11𝑐 ∙ 𝑑, where 𝑎 ≥ 4, 𝑏 ≥ 2, 𝑐 ≥ 1, and 𝑑 ≥ 1.Therefore, 𝑦 must equal 
22 ∙ 31 = 𝟏𝟐. 
 
 
I-2. Let 𝑁 be the point of tangency of the circle with 𝐴𝐵̅̅ ̅̅  and let 𝑀𝐵̅̅ ̅̅ ̅ be drawn as below.  
 

 
Since ∆𝐵𝑀𝐶 and ∆𝐵𝑀𝑁 are right triangles sharing a hypotenuse, and 𝑀𝑁̅̅ ̅̅ ̅ and 𝑀𝐶̅̅̅̅̅ are radii, 
∆𝐵𝑀𝐶 ≅ ∆𝐵𝑀𝑁. Thus 𝐵𝑁 = 12, and 𝐴𝑁 = 1. Also, ∆𝐴𝑁𝑀~∆𝐴𝐶𝐵 since they share ∠𝐴, 
therefore 𝑁𝑀

𝐴𝑁
= 𝐶𝐵

𝐴𝐶
.    Therefore 𝑟 = 12

5
, so the answer is 𝟏𝟕. 

 
 
I-3.  Let 𝑚 and 𝑛 be the number of men and women, respectively. Then either we choose two 
men and one woman, or two women and one man. Therefore: 

(
𝑚
2 ) (

𝑤
1) + (

𝑤
2) (

𝑚
1 ) = 25 

 
𝑚(𝑚 − 1)𝑤

2 +
𝑤(𝑤 − 1)𝑚

2 = 25 

𝑚𝑤(𝑚 + 𝑤 − 2) = 50. 
Now because 𝑚, 𝑤 and 𝑚 + 𝑤 − 2 are positive integer divisors of 50, and 𝑚, 𝑤 ≥ 2, we have 
only a few possibilities to check. If 𝑚 = 2, then 𝑤2 = 25, so 𝑤 = 5; the case 𝑚 = 5 is 
symmetric. If 𝑚 = 10, then 𝑤(𝑤 + 8) = 5, which is impossible. If 𝑚 = 25, then 𝑤(𝑤 + 23) =
2, which is also impossible. So {𝑚, 𝑤} = {2,5}, and 𝑚 + 𝑤 = 𝟕. 
 
 
 
 



I-4.     
 
 
 
 
 
 
 
 
 
 
The area of hexagon 𝐺𝐵𝐶𝐷𝐾𝐿 can be computed as [𝐺𝐵𝐶𝐷𝐾𝐿] = [𝐴𝐵𝐶𝐷𝐸𝐹] − [𝐴𝐺𝐿𝐾𝐸𝐹], and 
[𝐴𝐺𝐿𝐾𝐸𝐹] can be computed by dividing concave hexagon 𝐴𝐺𝐿𝐾𝐸𝐹 into two parallelograms 

sharing 𝐹𝐿̅̅̅̅ . If 𝐴𝐵 = 𝑎, then the height 𝐴𝐸 = 𝑎√3, so the height of parallelogram 𝐴𝐺𝐿𝐹 is 𝑎√3
2

. 

Therefore [𝐴𝐺𝐿𝐹] = 𝐿𝐹 ∙ 𝑎√3
2

 and [𝐴𝐺𝐿𝐾𝐸𝐹] = 𝐿𝐹 ∙ 𝑎√3.  

On the other hand, the area of a regular hexagon of side length 𝑎 is 3𝑎2√3
2

. Since [𝐺𝐵𝐶𝐷𝐾𝐿] =
1
2

[𝐴𝐵𝐶𝐷𝐸𝐹], it follows that [𝐴𝐺𝐿𝐾𝐸𝐹] = 1
2

[𝐴𝐵𝐶𝐷𝐸𝐹], and  

𝐿𝐹 ∙  𝑎√3 =
1
2 (

3𝑎2√3
2 ) =

3𝑎2√3
4  

from where 𝐿𝐹 = 3
4

𝑎. With 𝑎 = 24, 𝐿𝐹 = 𝟏𝟖. 
 
 
 
I-5.   Note that the number of digits of 𝑛 is ⌊log 𝑛⌋ + 1. 
Since 100100010,000 = (102)100010,000, 𝑋 = 2 ∙ 100010,000+1. Similarly, 𝑌 = 3 ∙
10,000100,000+1. With change of base formula, 

⌊log𝑋 𝑌
log 𝑌
log 𝑋⌋ ≈

log 3 + log 10,000100,000

log 2 + log 100010,000  

=
log 3 + 100,000 log 10,000

log 2 + 10,000 log 1000  

=
log 3 + 100,000 ∙ 4
log 2 + 10,000 ∙ 3  

=
400,000 + log 3
30,000 + log 2  

 
When compared to 400,000 and 30,000, log 3 and log 2 are very small, and as such can be 
considered redundant. Therefore, 

⌊log𝑋 𝑌⌋ = ⌊400,000
30,000

⌋ = 𝟏𝟑. 
 



I-6.     The requirement that 𝑎𝑛 be the smallest positive value of 𝑛 − 𝑎𝑘
2 for 𝑘 < 𝑛 is equivalent 

to determining the largest value of 𝑎𝑘 such that 𝑎𝑘
2 < 𝑛. For 𝑛 = 3, use either 𝑎1 = 𝑎2 = 1 to 

find 𝑎3 = 3 − 12 = 2. For 𝑛 = 4, the strict inequality eliminates 𝑎3, so 𝑎4 = 4 − 12 = 3, but 
𝑎3can be used to compute 𝑎5 = 5 − 22 = 1. In fact, until 𝑛 = 10, the largest allowable prior 
value of 𝑎𝑘 is 𝑎3 = 2, yielding the values 𝑎6 = 2,  𝑎7 = 3, 𝑎8 = 4, 𝑎9 = 5. In general, this 
pattern continues: from 𝑛 = 𝑚2 + 1 until 𝑛 = (𝑚 + 1)2, the values of 𝑎𝑛 increase from 1 to 
2𝑚 + 1. 
Let 𝑆𝑚 = 1 + 2 + ⋯ + (2𝑚 + 1). Then the problem reduces to computing 𝑆0 + 𝑆1 + ⋯ + 𝑆6 +
1, because 𝑎49 = 49 − 62, while 𝑎50 = 50 − 72 = 1. 𝑆𝑚 = (2𝑚+1)(2𝑚+2)

2
= 2𝑚2 + 3𝑚 + 1, so 

𝑆0 + 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 𝑆5 + 𝑆6 = 1 + 6 + 15 + 28 + 45 + 66 + 91 = 252. 
Therefore, the desired sum is 𝟐𝟓𝟑. 
 
 
 
I-7.   Since |(10𝐴 + 𝐵) − (10𝐵 + 𝐴)| = 9|𝐴 − 𝐵| = 𝑘2, it follows that |𝐴 − 𝐵| is a perfect 
square. 
|𝐴 − 𝐵| = 0 yields 10 pairs of integers: (𝐴, 𝐵) = (0,0), (1,1), … , (9,9). 
|𝐴 − 𝐵| = 1 yields 18 pairs: the nine (𝐴, 𝐵) = (0,1), (1,2), … , (8,9), and their reverses. 
|𝐴 − 𝐵| = 4 yields 12 pairs: the six (𝐴, 𝐵) = (0,4), (1,5), … , (5,9), and their reverses. 
|𝐴 − 𝐵| = 9 yields 2 pairs: (𝐴, 𝐵) = (0,9), and its reverse. 
Thus, the total number of possible ordered pairs (𝐴, 𝐵) is 𝟒𝟐. 
 
 
I-8.   Let 𝐴 = (0,5) and 𝐵 = (12,0), and let 𝐶 = (1, −1). First compute the distance sum: 
𝑑(𝐴, 𝐶) + 𝑑(𝐵, 𝐶) = 19. Notice that if 𝑃 = (𝑥, 𝑦) is on the segment from (0, −1) to (12, −1), 
then 𝑑(𝐴, 𝑃) + 𝑑(𝐵, 𝑃) is constant. This is because if 0 < 𝑥 < 12,  

𝑑(𝐴, 𝑃) + 𝑑(𝐵, 𝑃) = |0 − 𝑥| + |5 − (−1)|+|12 − 𝑥| + |0 − (−1)| 
= 𝑥 + 6 + (12 − 𝑥) + 1 

= 19. 
Similarly, 𝑑(𝐴, 𝑃) + 𝑑(𝑃, 𝐵) = 19 whenever 𝑃 is on the segment from (0,6) to (12,6). If 𝑃 is on 
the segment from (13,0) to (13,5), then  𝑃′𝑠 coordinates are (13, 𝑦), with 0 ≤ 𝑦 ≤ 5, and thus  

𝑑(𝐴, 𝑃) + 𝑑(𝐵, 𝑃) = |0 − 13| + |5 − 𝑦| + |12 − 13| + |0 − 𝑦| 
= 13 + (5 − 𝑦) + 1 + 𝑦 

= 19. 
 
Similarly, 𝑑(𝐴, 𝑃) + 𝑑(𝑃, 𝐵) = 19 whenever 𝑃 is on the segment from (−1,0) to (−1,5). 
Finally, if 𝑃 is on the segment from (12, −1) to (13,0), then 𝑑(𝐴, 𝑃) + 𝑑(𝐵, 𝑃) is constant: 
 

𝑑(𝐴, 𝑃) + 𝑑(𝐵, 𝑃) = |0 − 𝑥| + |5 − 𝑦| + |12 − 𝑥| + |0 − 𝑦| 
= 𝑥 + (5 − 𝑦) + (𝑥 − 12) + (−𝑦) 

= 2𝑥 − 2𝑦 − 7, 
and since the line segment has equation 𝑥 − 𝑦 = 13, this expression reduces to  
 

𝑑(𝐴, 𝑃) + 𝑑(𝐵, 𝑃) = 2(𝑥 − 𝑦) − 7 



= 2(13) − 7 
= 19. 

Similarly, 𝑑(𝐴, 𝑃) + 𝑑(𝐵, 𝑃) = 19 on the segments joining (13,5) and (12,6), (0,6) and (−1,5), 
and (−1,0) to (0,1). The shape of the “ellipse” is given below. 

 
 
The simplest way to compute the polygon’s area is to subtract the areas of the four corner 
triangles from that of the enclosing rectangle. The enclosing rectangle’s area is 14 ∙ 7 = 98, 
while each triangle area is 1

2
. Therefore, the area is 98 − 4 ∙ 1

2
= 𝟗𝟔. 

 
 
 
I-9.    Let’s group values of 𝑛 according to the number of bits in their binary representations: 
Let 𝐵𝑛 be the set of 𝑛-bit integers, and let 𝐶𝑛 = ∑ 𝐶(𝑘)𝑘∈𝐵𝑛  be the sum of the 𝐶-values for all 

𝑛-bit integers. Observe that the integers in 𝐵𝑛+1 can be obtained by appending a 1 or a 0 to the 
integers in 𝐵𝑛. Appending a bit does not change the number of consecutive 1’s in the previous 
(left) bits, but each number in 𝐵𝑛 generates two different numbers in 𝐵𝑛+1. Thus, 𝑐𝑛+1 equals 
2𝑐𝑛 plus the number of new 11 pairs. Appending a 1 will create a new pair of consecutive 1’s in 
and only in numbers that previously terminated in 1. The number of such numbers is half the 
number of elements in 𝐵𝑛. Because there are 2𝑛−1 numbers in 𝐵𝑛, there are 2𝑛−2 additional 



pairs of consecutive 1’s among elements in 𝐵𝑛+1. Thus for 𝑛 ≥ 2, the sequence satisfies the 
recurrence relation: 

𝑐𝑛+1 = 2𝑐𝑛 + 2𝑛−2. 
Therefore, 

𝑐5 = 2𝑐4 + 24−2 = 20 
𝑐6 = 2𝑐5 + 25−2 = 48 

𝑐7 = 2𝑐6 + 26−2 = 112 
𝑐8 = 2𝑐7 + 27−2 = 256 

Since 𝐶(256) = 0, the desired sum is 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5 + 𝑐6 + 𝑐7 + 𝑐8 = 𝟒𝟒𝟖. 
 
 

I-10.    Assume that a solution would look like the diagram below. 

 
 If we think of 𝑧, 𝑧2 and 𝑧3 as vectors in the complex plane, then 𝑧2 − 𝑧 = 𝐴𝐵̅̅ ̅̅  and 𝑧3 − 𝑧 =
𝐴𝐷̅̅ ̅̅ .  𝐴𝐵̅̅ ̅̅  and 𝐴𝐷̅̅ ̅̅  must have the same magnitude and that magnitude equals the side of the 
square. Also, since multiplication by 𝑖 rotates by 90°, (𝐴𝐵̅̅ ̅̅ )𝑖 = 𝐴𝐷̅̅ ̅̅  and (𝐴𝐷̅̅ ̅̅ )(−𝑖) = 𝐴𝐵̅̅ ̅̅ . Thus, 
the quotient of the two vectors equals either 𝑖 or −𝑖. These considerations underlie the 
following solution: 
We will consider three cases, depending on which element of {𝑧, 𝑧2, 𝑧3} is between the other 
two in the square. In each case we will find possible values for 𝑧 by setting the quotient of the 
adjacent sides, expressed as complex vectors, equal ±𝑖. That means that as vectors, the ratio of 
the side lengths is | ± 𝑖| and the angle between them is arg(±𝑖) = ±90°. 

i) Let 𝑧 be between 𝑧2 and 𝑧3. Then 𝑧
3−𝑧

𝑧2−𝑧
= ±𝑖 →  𝑧 + 1 = ±𝑖 → 𝑧 = −1 ± 𝑖. If 𝑧 =

−1 + 𝑖, 𝑧2 = −2𝑖 giving |𝑧2 − 𝑧| = √10, so the area is 10. If 𝑧 = −1 − 𝑖, the area is 
also 10. 

ii) Let 𝑧2 be between 𝑧 and 𝑧3. Then 𝑧
3−𝑧2

𝑧2−𝑧
= ±𝑖  →  𝑧 = ±𝑖. In this case 𝑧2 = −1 and 

so |𝑧2 − 𝑧| = |−1 ± 𝑖| = √2. The area of the square is 2. 

iii) Finally, let 𝑧3 lie between 𝑧 and 𝑧2. Then 𝑧3−𝑧
𝑧3−𝑧2 = ±𝑖  →   𝑧(𝑧2−1)

𝑧2(𝑧−1)
= ±𝑖  → 𝑧+1

𝑧
= ±𝑖 

1
𝑧

= −1 ± 𝑖  →   𝑧 = − 1
2

∓ 1
2

𝑖. This gives 𝑧2 = ± 1
2

𝑖, so the length of the diagonal of 



the square equals |𝑧2 − 𝑧| = |1
2

𝑖 − (− 1
2

− 1
2

𝑖)| = |1
2

+ 𝑖| = √1
4

+ 4
4

= √5
2

. The area is 

then ( √5
2√2

)
2

= 5
8
.  

The minimum area is 5
8
 , and the maximum area is 10, so the answer is 40 (5

8
+ 10) = 𝟒𝟐𝟓. 

Graphs of examples of solutions to cases (i), (ii), and (iii) respectively are shown below (left to 
right). 
 

 



4 Power Question 2015: The Power of Ri✏es

Instructions: The power question is worth 50 points; each part’s point value is given in brackets next to the part.
To receive full credit, the presentation must be legible, orderly, clear, and concise. If a problem says “list” or “com-
pute,” you need not justify your answer. If a problem says “determine,” “find,” or “show,” then you must show
your work or explain your reasoning to receive full credit, although such explanations do not have to be lengthy. If a
problem says “justify” or “prove,” then you must prove your answer rigorously. Even if not proved, earlier numbered
items may be used in solutions to later numbered items, but not vice versa. Pages submitted for credit should be
NUMBERED IN CONSECUTIVE ORDER AT THE TOP OF EACH PAGE in what your team considers to be
proper sequential order. PLEASE WRITE ON ONLY ONE SIDE OF THE ANSWER PAPERS. Put the TEAM
NUMBER (not the team name) on the cover sheet used as the first page of the papers submitted. Do not identify
the team in any other way.

This power question concerns sequences of positive integers, which will be written as ha1, a2, . . .i, or simply hani.
In all cases, the first term of the sequence will have index 1, that is, no term will be denoted a0.

Throughout this power event, the word “sequence” is equivalent to “positive integer sequence”.
Sequences may not contain non-positive or non-integer values!

A sequence such as h71, 54, 37, 20, 3, 20, 3, 20, 3, 20, 3, 20, 3, . . .i is called periodic; in this case, the period of the se-
quence is 2, and the periodicity begins at the fourth term. Formally, a sequence will be called periodic if there exists
a positive integer p and a positive integer s such that an = an+p for all n � s; the period of the sequence is the least
such value of p, and the beginning of periodicity of the sequence is the least such value of s.

The following are four examples of sequences:

1. A constant sequence such as h2, 2, 2, . . .i is the sequence all of whose terms are 2. The sequence might also be
written as an ⌘ 2.

2. The powers of two are given by an = 2n�1, and begin h1, 2, 4, . . .i.

3. The Fibonacci sequence will be denoted by hFni; they are defined by F1 = F2 = 1 and the rule Fn = Fn�1+Fn�2

for n � 3.

4. The modulo sequence for n, h1, 2, 3, . . . , n, 1, 2, 3, . . . , n, 1, 2, . . .i, that is, the periodic sequence satisfying the
conditions (i) that the sequence has period n, (ii) that the periodicity begins with the first term, and (iii) that
the first n terms are 1, 2, 3, . . . , n.

As the examples suggest, a sequence can be defined by an explicit or recursive formula, and need not have any easily
expressible algebraic formula.

For a given sequence hani, the ri✏e of hani, denoted ha0
n
i, is given by setting a01 = a1, and for n � 2:

a0
n
=

⇢
a0
n�1 � an if an < a0

n�1

a0
n�1 + an otherwise.

Note that each term in ha0
n
i is a positive integer, and so ha0

n
i is indeed a sequence.

1. Compute a010 for each sequence below. [5 pts]

a. an = n

b. an = n+ 1

c. an = n2

d. an = 2n�1

e. an = Fn, the Fibonacci sequence

10



2. Compute a02015 for each sequence below. [3 pts]

a. an = n

b. an = 2n�1

c. the modulo sequence for n = 5

3. Determine the smallest n for which a0
n
= 2015 for each sequence below, or show that no such n exists. [7 pts]

a. an = n

b. an = Fn

c. the modulo sequence for n = 1000

d. an = 3n � 2n

4. a. Compute examples of two sequences hani and hbni with equal periods such that ha0
n
i and hb0

n
i have di↵erent

periods, or show that no such pair of sequences exists. [2 pts]

b. Show that hani is periodic if and only if ha0
n
i is periodic. [3 pts]

5. Suppose that hani has period p and that ha0
n
i has period q. [6 pts]

a. Show that p  q  p ·M , where M is the maximum value of ha0
n
i.

b. Determine whether p must be a divisor of q.

6. A sequence hani is invertible if there exists at least one sequence hbni for which hb0
n
i = hani; in that case, the

sequence hbni is an inverse of hani. Determine whether the following sequences hani are invertible. [4 pts]

a. an = n

b. an =
�
n+1
2

�

c. an = 2n

d. an = nm, where m > 1 is a fixed integer

7. a. Compute an example of a sequence with period 17 that is invertible, and an example of a sequence with
period 17 that is not invertible. [2 pts]

b. Suppose that hani is periodic with period 2 beginning at n = 1, and that a2 > 2a1. Show that hani is
invertible. [2 pts]

c. Let hani be a strictly increasing sequence. That is, an < an+1 for all n. Suppose further that hani is
invertible. Prove that an � 2n�1 for all n. [2 pts]

d. Determine the set of real numbers S for which the following statement is true: hani is invertible if and
only if an+1

an
/2 S for all n � 1. [3 pts]

8. Suppose hani is invertible. Let hani�1 denote the inverse of hani. More generally, if k � 1 and hani�k is
invertible, denote its inverse by hani�(k+1). (It may be helpful to define hani0 = hani.) Define hani to be
k-invertible if the sequences

hani, hani�1, . . . , hani�(k�1)

are all invertible.

a. Determine whether there exists a set S for which the following statement is true: hani is 2-invertible if
and only if an+1

an
/2 S for all n � 1. [4 pts]

b. Determine whether there exists a sequence hani that is 2015-invertible but not 2016-invertible. [3 pts]

c. Determine whether there exists a sequence hani that is k-invertible for all k � 1. (Such a sequence will
be called infinitely invertible, or 1-invertible.) [4 pts]

11



5 Solutions to Power Question

1. The first 10 terms of a0
n
for each sequence are given below.

a. an = n: ha0
n
i = h1, 3, 6, 2, 7, 1, 8, 16, 7,17, . . .i

b. an = n+ 1: ha0
n
i = h2, 5, 1, 6, 12, 5, 13, 4, 14,3, . . .i

c. an = n2: ha0
n
i = h1, 5, 14, 30, 5, 41, 90, 26, 107,7, . . .i

d. an = 2n�1: ha0
n
i = h1, 3, 7, 15, 31, 63, 127, 255, 511,1023, . . .i

e. an = Fn: ha0ni = h1, 2, 4, 1, 6, 14, 1, 22, 56,1, . . .i

2. a. Although no proof is required for this problem, it is useful to determine which values of n satisfy a0
n
= 1.

If a0
k
= 1, the next three terms of the sequence will be k + 2, 2k + 4, k + 1—note the two consecutive

increases—after which ha0
n
i increases and decreases alternately. Thereafter, if a0

m
and a0

m+2 follow con-
secutive decreases, then a0

m+2 = a0
m
� 1, and similarly a0

m+2 = a0
m
+ 1 if a0

m
and a0

m+2 follow consecutive
increases. Thus, if a0

k+3 = k + 1, the next value of m such that a0
m

= 1 is m = k + 3 + 2k = 3k + 3.

Using this relation yields a0
n

= 1 for n = 1, 6, 21, 66, 201, 606, 1821. Subsequently, a01824 = 1822, and
a01825 = 3647. As 2015 is 190 terms later, a02015 = 3647 + 1

2 · 190 = 3742.

b. Use induction to show that a0
n
= 2n � 1. The base case is a01 = a1 = 1 = 21 � 1. Assume then that

a0
n
= 2n�1. Then because an+1 = 2(n+1)�1 = 2n > a0

n
, it follows that a0

n+1 = a0
n
+an = 2·2n�1 = 2n+1�1.

Hence a02015 = 22014.

c. Note that hani is periodic, and therefore bounded. A reasonable conjecture is that ha0
n
i is periodic.

Although no proof is required for this problem, it is useful to provide one now. First, though, it must
be shown that if all the terms of a sequence hani are at most M , then all the terms of ha0

n
i are at most 2M :

Proof: Assume towards a contradiction that there exists at least one term in ha0
n
i that exceeds 2M .

Let k be the smallest index satisfying a0
k
> 2M . Then a0

k�1  2M , and so ha0
n
i has an increase from a0

k�1
to a0

k
. As this is an increase, it must be the case that ak � a0

k�1. Then 2ak � a0
k�1 + ak = a0

k
> 2M ,

which implies ak > M , a contradiction. 2

Note that in general, the 2M bound cannot be improved. For example, the constant sequence h1, 1, 1, . . .i
has a ri✏e h1, 2, 1, 2, . . .i. Now it can be shown that if hani is periodic, then ha0

n
i is periodic as well.

Proof: If hani is periodic, then it is bounded. Let its period be p and its maximum value be M .
For any fixed o↵set r, the subsequence ha0

p+r
, a02p+r

, a03p+r
, . . .i must repeat a value in its first 2M + 1

terms. Suppose the first instance of a repeated value in this subsequence is a0
kp+r

= a0
lp+r

. Because
akp+r+c = alp+r+c for all positive integers c, it follows by induction that a0

kp+r+c
= a0

lp+r+c
. Therefore

ha0
n
i is periodic, and its period is at most (2M + 1)p. 2

Because ha0
n
i is periodic with period 5, it is enough to find k, l, and r such that a05k+r

= a05l+r
. The

first 20 terms of ha0
n
i are given below.

1 3 6 2 7 6 4 1 5 10
9 7 4 8 3 2 4 1 5 10

The first instance of such a repeated pair of terms is a07 = a017 = 4. Thus ha0
n
i is periodic with period 10.

From here it is straightforward to get a02015 = a015 = 3.
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3. a. From the solution to 2a, recall that if k > 1 and if a0
k
= 1, then the next term to equal 1 will be a03k+3. Fur-

thermore, it was shown that the terms a0
k+1, a

0
k+2, . . . , a

0
3k+3 consist of alternating increases and decreases,

with the terms coming after the increases or decreases themselves increasing or respectively decreasing by
1. That is, a0

k+2, a
0
k+4, . . . , a

0
3k+2 = 2k+4, 2k+5, . . . , 3k+4; and a0

k+1, a
0
k+3, . . . , a

0
3k+3 = k+2, k+1, . . . , 1.

For each set of terms ak, ak+1, . . . , a3k+3, consider the range of values covered by the respective increasing
and decreasing subsequences:

k Up Down
1 6, 7 3, 2, 1
6 16, 17, . . . , 22 8, 7, . . . , 1
21 46, 47, . . . , 67 23, 22, . . . , 1
66 136, 137, . . . , 202 68, 67, . . . , 1
201 406, 407, . . . , 607 203, 202, . . . , 1
606 1216, 1217, . . . , 1822 608, 607, . . . , 1
1821 3646, 3647, . . . , 5467 1823, 1822, . . . , 1
5466 10936, 10937, . . . , 16402 5468, 5467, . . . , 1

It is clear then that the first time 2015 occurs in ha0
n
i will be in the decreasing subsequence beginning at

a05467 = 5468. Because 5468 � 2015 = 3453, it will take 2 · 3453 = 6906 more terms to reach 2015. That
is, 2015 = a05467+6906 = a0

12373.

b. In this case, a0
n
= 2015 has no solution. Note that ha0

n
i begins with 1, 2, 4, 1. That is, a04 = 1.

Now suppose a0
n
= 1, for some index n > 2. Then an+1 = Fn+1 > 1 and an+2 = Fn+2 � Fn+1 + 1.

Therefore a0
n+1 = Fn+1 + 1, a0

n+2 = Fn+1 + 1 + Fn+2 = Fn+3 + 1, and a0
n+3 = (Fn+3 + 1) � Fn+3 = 1.

That is, every third term of ha0
n
i will equal 1, and the intermediate terms will each be 1 greater than a

Fibonacci number.

This result applies to ha0
n
i from n = 4 onward. Because 2014 is not a Fibonacci number, 2015 does

not appear in ha0
n
i.

c. It can be shown by contradiction that 2015 does not appear in ha0
n
i. If a0

n
= 2015, then because an  1000,

a0
n�1 must be smaller than a0

n
. That is, a0

n�1 = a0
n
� an = 2015 � an � 1015. But because a0

n�1 � 1015
and an  1000, it follows that a0

n
= a0

n�1 � an < 1015. Thus 2015 does not appear in ha0
n
i.

d. The number 2015 does not appear in ha0
n
i. First, it will be shown that ha0

n
i has no decreases, or equiv-

alently, an > a0
n�1 for all n. Proceed by induction. In the base case, a2 = 5 > 1 = a01. Then assume

a0
k
= a1+· · ·+ak for some k � 1. Note that 31+32+· · ·+3k = 1

2 (3
k+1�3) and 21+22+· · ·+2k = 2k+1�2,

so a0
k
= 3k+1

2 � 2k+1 + 1
2 . Then ak+1 � a0

k
= 3k+1�1

2 > 0, so a0
k+1 = a0

k
+ ak+1, which is another increase.

This completes the inductive step.

Because ha0
n
i is strictly increasing, it is necessary only to compute terms until reaching one that is at

least 2015. The first several terms of ha0
n
i are 1, 6, 25, 90, 301, 966, 3025. Hence 2015 does not occur in the

sequence.

4. a. There are many such examples. Consider hani = h1, 2, 1, 2, . . .i and hbni = h1, 3, 1, 3, . . .i: their respective
ri✏es, with periods 4 and 6, are shown below.

ha0
n
i = h1, 3,2, 4, 3, 1,2, 4, 3, 1, . . .i

hb0
n
i = h1, 4, 3, 6, 5, 2,1, 4, 3, 6, . . .i

b. The forward direction of the proof was shown earlier as a part of the solution to 2c, so now consider the
reverse direction of the proof.
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Suppose that ha0
n
i is periodic with period p. Let r be an integer such that a0

s
= a0

s+p
for all s � r.

Because an = |a0
n
�a0

n�1| for all n > 1, it follows that as+p = |a0
s+p

�a0
s+p�1| = |a0

s+2p�a0
s+2p�1| = as+2p

for all s � r. This establishes the periodicity of hani, and completes the proof. 2

5. a. By assumption, the sequence hani has period p, the ri✏e ha0
n
i has period q, and maxn a0n = M . Let the

periodicity of ha0
n
i begin at r, that is, for all k � r, a0

k
= a0

k+q
. Then

ak+1 =
��a0

k+1 � a0
k

�� =
��a0

k+1+q
� a0

k+q

�� = ak+1+q

for all such k, and so hani is periodic with period at most q. That is, p  q.

Let s be an integer for which ak = ak+p for all k � s. Consider the M + 1 values a0
s
, a0

s+p
, . . . , a0

s+Mp
.

These are M + 1 terms, all of which are values between 1 and M . Hence there must exist integers u and
v such that 0  u < v  M and a0

s+up
= a0

s+vp
. It can be shown via induction that ha0

n
i is periodic from

a0
s+up

onwards. Assume a0
s+up+z

= a0
s+vp+z

for some z � 0. (The case z = 0 has already been estab-
lished.) Because a0

s+up+z
= a0

s+vp+z
and as+up+z+1 = as+vp+z+1, it follows that a0s+up+z+1 = a0

s+vp+z+1,
concluding the inductive step. Thus ha0

n
i is periodic with period at most (v � u)p  Mp.

b. Show that q is a multiple of p by contradiction. If p = 1, then q must be a multiple of p. So assume that
p > 1. In the proof that follows, the essential idea is that if q is not a multiple of p, then hani must be
periodic with a period of c = gcd(p, q).

Assume towards a contradiction that q is not a multiple of p. Let c = gcd(p, q), and let d = p

c
. Note that

c < p, and so d > 1.

Let r be an integer for which ar+k = ar+k+p for all k � 0. Then for at least one integer i with 1  i  c,
the terms ar+i, ar+i+c, . . . , ar+i+(d�1)c must contain at least two di↵erent values. (If this weren’t the case,
then hani would have period at most c, which is a contradiction.)

So let x, y be integers, with 0  x < y < d for which ar+i+xc 6= ar+i+yc. Because c = gcd(p, q), p

c

and q

c
are relatively prime. Hence there exists an integer m > 0 such that m · q

c
⌘ 1 mod p

c
. Thus

m(y � x)q ⌘ (y � x)c mod p. Then

ar+i+xc = |a0
r+i+xc

� a0
r+i+xc�1|

= |a0
r+i+xc+m(y�x)q � a0

r+i+xc+m(y�x)q�1|
= ar+i+xc+m(y�x)q.

But r + i+ xc+m(y � x)q is no less than r and is congruent to r + i+ yc mod p, so

ar+i+xc+m(y�x)q = ar+i+yc 6= ar+i+xc.

This result contradicts the existence of two distinct values within one of the p

c
subsequences of hani, which

would imply that hani is periodic with period at most c.

6. a. The sequence is not invertible. Note that if hbni is an inverse of hani, then b3 = |a3 � a2| = 1. But then
it follows that a3 = b03 = b02 � b3 = 2� 1 = 1 6= a3.

b. The sequence is not invertible. The first few terms of hani are 1, 3, 6, 10, 15. So if hbni is an inverse of
hani, it follows that b4 = |a4 � a3| = 4. But then a4 = b04 = b03 � b4 = 6� 4 = 2.

c. The sequence is invertible, with inverse hbni, where b1 = 1, and bn = 2n�2 for n > 1. It is straightforward
to show by induction that hb0

n
i = hani.
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d. This sequence is not invertible for any value of m. As with the earlier examples of sequences that were not
invertible, the key is to find a pair of terms an, an+1 for which an+1

an
< 2. Because m

p
2 > 1, there exists

an integer k for which (k+1
k

)m < 2. So suppose there exists a sequence hbni for which b01, b
0
2, . . . , b

0
k
=

a1, a2, . . . , ak. Because (
k+1
k

)m < 2, it follows that ak+1 < 2ak. Therefore bk+1 = |ak+1�ak| = ak+1�ak,
which is less than ak = b0

k
. Thus b0

k+1 = b0
k
� bk+1 = 2ak � ak+1, which is less than ak+1.

7. a. The periodic sequence h17, 16, 15, . . . , 1, 17, 16, . . .i is invertible, whereas the periodic sequence
h1, 2, 3, . . . , 17, 1, 2, . . .i is not invertible.

b. Let hbni be defined as follows: b1 = a1, and for n > 1, bn = a2 � a1. Then b2 > b1, and it follows that
b01 = b1 = a1, b02 = b1 + b2 = a2, and b03 = b02 � b3 = a1. Because b01 = b03 and hbni is constant for n � 2,
hb0

n
i is periodic from n � 2 onwards. Thus hbni is an inverse of hani.

c. Proceed by induction on n. For the base case, a1 � 1 = 21�1. Suppose that hb0
n
i = hani, and assume

that an � 2n�1. Then an+1 � an implies that bn+1 � an = 2n�1, so an+1 = an+bn+1 � 2n�1+2n�1 = 2n.

d. Given a sequence hani of positive integers, define the ru✏e sequence hâni as follows: let â1 = a1, and for
n > 1 let ân = |an � an�1|.

Claim: If hani is invertible, it can have only one inverse, namely hâni.

Proof of Claim: Suppose there exists a sequence hbni for which hb0
n
i = hani. Then b1 = a1, and

for n > 1, bn = |an � an�1|. That is, hbni = hâni. 2

Note the restricted nature of the claim: it does not guarantee that h(â)0
n
i = hani. For example, the

ru✏e of h1, 2, 3, 4, . . .i is the constant sequence h1, 1, 1, 1, . . .i, but the ri✏e of that constant sequence
is the period-2 sequence h1, 2, 1, 2, . . .i. The reason the claim appears to generate an extraneous inverse
to h1, 2, 1, 2, . . .i is that this sequence doesn’t have an inverse, which was one of the hypotheses of the claim!

Now consider the question at hand:

Stronger Claim: A sequence hani is invertible if and only if an+1

an
/2 [1, 2) for all n � 1.

Proof of Stronger Claim: Suppose hani is a positive integer sequence such that an+1

an
/2 [1, 2) for

all n � 1. Then ân > 0 for all n � 1. It is true that â1 = (â)01 = a1. Proceed by induction to show that
the ru✏e sequence hâni is the inverse of hani:

Suppose that (â)0
k

= ak for some k � 1. Then âk+1 = |ak+1 � ak|. If ak+1 < ak, then âk+1 =
ak � ak+1 < ak = (â)0

k
, and so (â)0

k+1 = (â)0
k
� âk+1 = ak � (ak � ak+1) = ak+1. If ak+1 > ak,

then âk+1 = ak+1 � ak � ak = (â)0
k
, and so (â)0

k+1 = (â)0
k
+ âk+1 = ak + (ak+1 � ak) = ak+1. This

completes the inductive step. (And the earlier claim entails that there are no other inverses of hani.)

To show that the condition on S is necessary, use proof by contradiction. Suppose k is the smallest
integer for which ak+1

ak
2 [1, 2). By the earlier induction, (â)0

k
= ak. Then âk+1 = ak+1 � ak < ak = (â)0

k
,

and so (â)0
k+1 = (â)0

k
� âk+1 = ak � (ak+1 � ak) = 2ak � ak+1, which is smaller than ak and therefore

cannot equal ak+1. 2

8. a. No such set S exists. For a given sequence hanik, let Rk

a
be the set of values {a2

a1
, a3
a2
, a4
a3
, . . .}. Note that

earlier it was shown that hani0 is invertible if and only if R0
a
\ [1, 2) = ?.

Let hbni0 be the periodic sequence h1, 3, 1, 3, 1, 3, . . .i. Then R0
b
= { 1

3 , 3}. This sequence is invertible,
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and hbni�1 = hb̂ni = h1, 2, 2, 2, 2, 2, . . .i. Clearly, hbni�1 is not invertible, because it has repeated values.

Now let hcni0 be the sequence whose first few terms are 1, 3, 9, 30, 10, and whose subsequent terms
are cn = 10n�4 for n 6= 6. That is, the first eight terms are 1, 3, 9, 30, 10, 100, 1000, 10000. Then
R0

c
= {3, 10

3 , 1
3 , 10}, and it follows that R0

c
\ [1, 2) = ?. Thus hcni0 is invertible. The first several

terms of hcni�1 are 2, 6, 21, 20, 90, 900, 9000. R�1
c

= {3, 7
3 ,

20
21 ,

9
2 , 10}. It follows that R�1

c
\ [1, 2) = ?, so

hcni0 is indeed 2-invertible.

On the other hand, R0
b
⇢ R0

c
. In order for the original claim to be true, either 1

3 or 3 must be an
element of S. But both these values are in R0

c
, and hcni0 is 2-invertible. Therefore the claim cannot be

true, as no such set S satisfies the condition.

b. Such a sequence exists. For an integer k � 1 and sequence hani, let hanik denote the kth ri✏e of hani.
That is, hanik+1 is the ri✏e of hanik. (And as before, let hani0 = hani.)

Consider the kth ri✏e of the sequence an = 2n�1. Note that hani is invertible, because an+1

an
= 2 for

all n. However, because the first two terms of hani�1 are 1, 1, hani is not 2-invertible.

Claim: Let hbni be the kth ri✏e of hani, where k � 1. Then hbni is strictly increasing, with bn+1

bn
> 2 for

all n.

Proof of Claim: The claim is true for k = 1, as hani1 = h1, 3, 7, 15, 31, . . .i, i.e., the sequence 2n � 1.
So assume the claim is true for some positive integer k, and let hcni = hb0

n
i = hanik+1. First show

that hcni is increasing. Proceed by induction. For the base case, c1 = b1, and because b2 > b1, it
follows that c2 = b1 + b2. Assume (further) now that hcni is increasing for c1, c2, . . . , cj . Note that

bj <
bj+1

2 , bj�1 < bj+1

4 , . . . , b1 < bj+1

2j , and so cj = b1+ b2+ · · ·+ bj < bj+1(2� 1
2j ). Then because bj+1

bj
> 2,

hcni increases at cj+1. This completes the (inner) inductive step, demonstrating that hcni is increasing. 2

It remains to complete the outer induction; that is, that the ratios of consecutive terms are decreas-
ing but are always larger than 2. It can be shown that they are all larger than 2, by noting that

cn+1

cn
=

b1 + b2 + · · ·+ bn + bn+1

b1 + b2 + · · ·+ bn

= 1 +
bn+1

b1 + b2 + · · ·+ bn

> 1 +
bn+1

bn+1

2n + bn+1

2n�1 + · · ·+ bn+1

21

> 1 +
1

1� 1
2n

> 2.

This argument completes the proof.

(Note: It can furthermore be shown that c2
c1

> c3
c2

> c4
c3

> · · · > 2.)

It has thus been shown that for any positive integer k, hanik is invertible. (Its ratios are all larger
than 2.) Thus hani2014 can be inverted 2014 times to get hani, and one more time to get 1, 1, 2, 4, 8, . . .,
but cannot be inverted once more (which would be a 2016th inversion).

This solution can easily be amended to find sequences that can be inverted k times but not k + 1 times.
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c. No such sequence hani exists. Proceed by contradiction: if a sequence hani is invertible, its unique inverse
is the ru✏e sequence, hâni. So assume that hani is infinitely invertible. Let a�k

n
denote the nth term of

hani�k, which is well-defined. Then a�k

1 = a1 for all k � 1, and a�k

n
= |a�k+1

n
�a�k+1

n�1 | for all n > 1, k � 1.

Consider the sequence a2, a
�1
2 , a�2

2 , . . . . The di↵erences between consecutive terms are all just a1. There
must exist an integer s2 such that a�k

2 < a1 for all k � s2. For example, if a1, a2 = 4, 17, then
a2, a

�1
2 , a�2

2 , . . . = 17, 13, 9, 5, 1, 3, 1, 3, 1, 3, . . . . That is, after some point, all the values are less than a1.

Now consider the sequence a3, a
�1
3 , a�2

3 , . . . . The di↵erences between consecutive terms are the terms
of the previous sequence. Note that at some point, all the di↵erences are at most a1 � 1, after which,
there must be some s3 � 1 for which a�s3

3 < a1 � 1. Then all subsequent terms are at most a1 � 2.

This process can be continued to show that for any r > 1, there exists some integer sr > sr�1 for
which ar, a�1

r
, a�2

r
, . . . eventually achieves a value less than a1 � (r� 2). Then all subsequent terms are at

most a1 � (r� 2). But this cannot continue indefinitely, as eventually, some term must equal zero, which
is not allowed. Hence there does not exist an infinitely invertible sequence.

Authors’ Note: The authors initially stumbled upon this topic in writing individual questions; in fact, problem 2a
was “almost” an individual question. Many other questions are suggested, such as the following:

1. Does there exist an integer N > 1 such that the first N terms of both hani and ha0
n
i are permutations of the

set of integers {1, 2, . . . , N}? If so, what are all such integers?

2. For a specific sequence hani, is it possible to determine which positive integers never occur in its ri✏e ha0
n
i, or

which occur only finitely many times in its ri✏e, or which occur infinitely many times in its ri✏e? For example,
what about the sequence an = n?

Either of these questions, or extensions of the previous questions, would make a promising topic for a mathematics
research project!
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