Please print all information legibly

Name	School	Grade
1) Let A, B, and	C be digits in base 7, with possible	values 0, 1,, 6. If $ACB_7 + BCC_7 = 1400_7$, what
is the base 10	value of ACB_7 ?	
2) Find the soluti	on set for the inequality: $\frac{1}{x} + 2x \ge$	≥ 3.
3) A triangle has is the length o		AB = 1. The angle bisector at B meets AC at P. What
	satisfies $f(0) = 0$, $f(2n) = f(n)$, lue of $f(2017)$?	f(2n + 1) = f(n) + 1 for all positive integers <i>n</i> .
5) A cube of chee	ese $c = \{(x, y, z) 0 \le x, y, z \le 1\}$ is cut a	along the planes $x = y$, $y = z$, and $x = z$.
How many pie		
6) What is the are	ea of a triangle with sides 10, 10, 16	5?
, 0	inscribed in a quarter-circle of radie width and height is 8. What is the	
8) Find the numb	per of integers, $n, 1 \le n \le 25$ such t	that $n^2 + 3n + 2$ is divisible by 6.
		sypotenuse of a 30°-60°-90° triangle. If the two triangles smallest angle of the first triangle?
	s of a cube are $P = (7, 12, 10)$, $Q = $ surface area of the cube?	= (8, 8, 1) and $R = (11, 3, 9)$.
11) If $x = \log(8)$	and $y = \log(9)$, then express $\log(9)$	$g(120\sqrt{2})$ in terms of x and y.
12) How many w	ays can we obtain \$20.15 using on	ly quarters and dimes?
Answers		
1)	2)	3)
4)	5)	6)
7)	8)	9)
10)	11)	12)

Name	School	Grade
	possible, non-zero value of A^2 - 6 + $B \log 18 + C \log 24 = 0$.	$-B^2 + C^2$ such that A, B, and C are integers
14) How many ordere	d pairs (x, y) of integers (not ne	cessarily positive) satisfy $\frac{1}{x} + \frac{1}{y} = \frac{1}{4}$?
	est integer larger than $\left(\sqrt{5} + \sqrt{3}\right)$	
16) The magic square	shown uses each integer from 1	
· •		e is another increase of 20%. What is the overall
		different letters represent different digits. What is the
19) There are 10 Blur	ay's in a package. Mike reads the likes. If he selects 4 at rando	e front of the package and realizes that 3 of the m, what is the probability that he gets exactly
20) If $\sin x + \cos x =$	$\sin x \cos x$, then what is $\sin x \cos x$	os x ?
21) If $f(x) = x^2 + 1$,	what is the value of $f\left(f\left(f\right)\right)$	(0))))?
		$(a-b)^2 = 4(ab)^3$, what is the smallest possible
value of $\frac{1}{a} + \frac{1}{b}$?	,	
		ints P ₁ , P ₂ , and P ₃ on BC satisfy
$\mathbf{BP}_1 = \mathbf{BP}_2 = \mathbf{BP}_3 =$	$= P_3C = 1$. What is the value of	$\left(AP_{1}\right)^{2} + \left(AP_{2}\right)^{2} + \left(AP_{3}\right)^{2}?$
	est of the three prime divisors of	
Answers		
13)	14)	15)
16)	17)	18)
19)	20)	21)
22)	23)	24)

No Calculators 1 hour time limit

No Calculators 1 hour time limit