\qquad School \qquad Grade \qquad

1) Let A, B, and C be digits in base 7 , with possible values $0,1, \ldots, 6$. If $A C B_{7}+B C C_{7}=1400{ }_{7}$, what is the base 10 value of $A C B_{7}$?
2) Find the solution set for the inequality: $\frac{1}{x}+2 x \geq 3$.
3) A triangle has a right angle at A with $\mathrm{AC}=3$ and $\mathrm{AB}=1$. The angle bisector at B meets AC at P . What is the length of CP?
4) A function f satisfies $f(0)=0, f(2 n)=f(n), f(2 n+1)=f(n)+1$ for all positive integers n.

What is the value of $f(2017)$?
5) A cube of cheese $c=\{(x, y, z) \mid 0 \leq x, y, z \leq 1\}$ is cut along the planes $x=y, y=z$, and $x=z$.

How many pieces are there?
6) What is the area of a triangle with sides $10,10,16$?
7) A rectangle is inscribed in a quarter-circle of radius 6 , as shown, so that The sum of the width and height is 8 . What is the area of the rectangle?

8) Find the number of integers, $n, 1 \leq n \leq 25$ such that $n^{2}+3 n+2$ is divisible by 6 .
9) The longer leg of a right triangle is equal to the hypotenuse of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. If the two triangles have equal perimeters, what is the tangent of the smallest angle of the first triangle?
10) Three vertices of a cube are $\mathrm{P}=(7,12,10), \mathrm{Q}=(8,8,1)$ and $\mathrm{R}=(11,3,9)$.

What is the surface area of the cube?
11) If $x=\log (8)$ and $y=\log (9)$, then express $\log (120 \sqrt{2})$ in terms of x and y.
12) How many ways can we obtain $\$ 20.15$ using only quarters and dimes?

Answers		
1$)$	$2)$	$3)$
4$)$	$5)$	$6)$
7$)$	$8)$	$9)$
10$)$	$11)$	$12)$

\qquad School \qquad Grade \qquad
13 Compute the least possible, non-zero value of $A^{2}+B^{2}+C^{2}$ such that A, B, and C are integers satisfying $A \log 16+B \log 18+C \log 24=0$.
14) How many ordered pairs (x, y) of integers (not necessarily positive) satisfy $\frac{1}{x}+\frac{1}{y}=\frac{1}{4}$?
15) What is the smallest integer larger than $(\sqrt{5}+\sqrt{3})^{6}$?
16) The magic square shown uses each integer from 1 through 9 , exactly once, so that The sum along any row, column, and both diagonals is 15 . What is the value of x ?

	9	4
x		

17) The price of a shirt is increased 25%, and then there is another increase of 20%. What is the overall percentage increase?
18) In this addition example, $\mathrm{AA}+\mathrm{BB}+\mathrm{CC}=\mathrm{BAC}$ different letters represent different digits. What is the value of the three-digit number BAC?
19) There are 10 Bluray's in a package. Mike reads the front of the package and realizes that 3 of the Bluray's are ones he likes. If he selects 4 at random, what is the probability that he gets exactly two of the ones he likes?
20) If $\sin x+\cos x=\sin x \cos x$, then what is $\sin x \cos x$?
21) If $f(x)=x^{2}+1$, what is the value of $f(f(f(f(0))))$?
22) If a and b are positive real numbers satisfying $(a-b)^{2}=4(a b)^{3}$, what is the smallest possible value of $\frac{1}{a}+\frac{1}{b}$?
23) Triangle ABC has $\mathrm{AB}=6, \mathrm{AC}=5$ and $\mathrm{BC}=4$. Points $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} on BC satisfy $\mathrm{BP}_{1}=\mathrm{BP}_{2}=\mathrm{BP}_{3}=\mathrm{P}_{3} \mathrm{C}=1$. What is the value of $\left(A P_{1}\right)^{2}+\left(A P_{2}\right)^{2}+\left(A P_{3}\right)^{2} ?$
24) Compute the largest of the three prime divisors of $13^{3}+16^{5}-172^{2}$.

Answers		
13$)$	$14)$	$15)$
16$)$	$17)$	$18)$
19$)$	$20)$	$21)$
22$)$	$23)$	$24)$

No Calculators
 1 hour time limit

2017 CT ARML Runoff Part II (1 hour) Please print all information legibly

