PLAYOFFS - 2015

Round 1: Arithmetic and Number Theory

- 1.
- 2. _____
- 3.
- 1. For integers x and y, $x * y = x^y + y^x$. If 2 * A = 100, compute A.

2. Given a and b are natural numbers and $a^2 + b^3 < 100$, how many ordered pairs satisfy this inequality?

3. Each square of a 3 x 3 grid is filled with a distinct integer from 1 to 9, inclusive.

Compute the probability that the randomly-filled grid at the right will have each of a, b, and c less than 5, and each of p, q, and r greater than 5.

a	b	c
x	5	y
p	q	r

PLAYOFFS - 2015

Round 2: Algebra 1

- 1.
- 2.
- 1. If $312_{(x-1)} = 211_{(x+1)}$, find the value of x.

The square of the reciprocal of 3 less than a number is $\frac{25}{144}$.

Compute two possible values of the number.

3. A and B denote the <u>largest</u> pair of values in the following list, where A > B:

$$1^{160}, 2^{140}, 3^{120}, 4^{100}, 5^{80}, 6^{60}, 7^{40}, 8^{20}, 9^{0}$$

Compute the ordered pair (A, B). Leave the answers in exponential form as shown.

PLAYOFFS - 2015

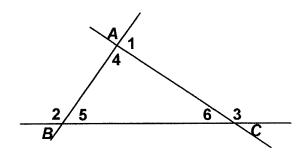
Round 3: Geometry

1. ____:__:___:

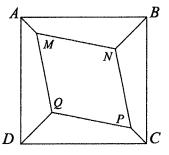
2._____

3.

1. The exterior angles of $\triangle ABC$ satisfy the following condition: $m \ge 1$: $m \ge 2$: $m \ge 3 = 7$: 10: 13. Compute the ratio $m \ge 4$: $m \ge 5$: $m \ge 6$.



2. ABCD is a square with a side length of 16. From A and C segments of length 2 are drawn into the square at angles of 45 with the sides. From B and D segments of length 4 are drawn in a similar fashion. Compute the area of MNPQ.



Given: An isosceles triangle where the legs each have length a and the base has length c. Let R denote the radius of the circumscribed circle. Determine a simplified expression for R^2 in terms of a and c

PLAYOFFS - 2015

Round 4: Algebra 2

- 1.
- 2.
- 3.
- 1. If $S_n = i^n + i^{-n}$, where *n* is any integer, and $i = \sqrt{-1}$, compute <u>all</u> possible values of S_n .

2. The roots of $\left(\frac{\log 0.\overline{3}}{\log 81}\right)x^2 + \left(\frac{\log 8}{\log 4}\right)x + \log 1000 = c$ are equal. Each log expression is understood to be a common log, i.e. \log_{10} . Compute c.

In the expansion of $(1+x^2)^t$ for a <u>positive</u> integer t, the coefficient of x^8 is six times the coefficient of x^4 . If the first term in the expansion is 1, compute the ninth term in the expansion.

PLAYOFFS - 2015

Round 5: Analytic Geome	ietry
-------------------------	-------

- 1. (____,____)
- 2. _____
- 1. Given the equation of a circle: $x^2 8x + y^2 + 14y + 40 = 0$. When written in simplified form, the area between a chord and an arc cut off by a central angle of 45° can be expressed as $\frac{a}{b}(\pi c\sqrt{d})$, where a, b, c, and d are integers. Determine (a, b, c, d)

2. Given the equation $y^2 - 8y + 13 = x$, compute the number of square units in the area of the trapezoid whose vertices are on the parabola and having x-coordinates which are 4 more and 16 more than the x-coordinate of the vertex.

Consider an ellipse with center (0,0) and the major axis on the y-axis. One vertex is $(0,-2\sqrt{10})$ and one point on the ellipse is P(-3,-4). A line L_1 through P has x-intercept 1 and intersects a line L_2 , which contains a focus F(0,f), f>0, and is perpendicular to L_1 . The intersection of L_1 and L_2 is Q(m,n). Determine the ordered pair (m,n).

PLAYOFFS - 2015

Round 6: Trig and Complex Numbers

- 1. (_______)
- 2. _____
- 3. (____,___,___)
- 1. The following can be expressed in a + bi form. Compute the ordered pair (a, b).

$$\left(\sqrt{2}cis\frac{7\pi}{24}\right)^4 \left(\sqrt{3}cis\frac{5\pi}{18}\right)^6$$

2. Given $\cos(a - 180^\circ) = -0.8$, $\sin(b + 90^\circ) = 0.6$, $0 \le a < 90^\circ$, and $0 \le b < 90^\circ$, compute $\cos(a + b) - \sin(a - b)$.

There are 4 solutions to the equation $\sin(x+17) = \cos(2x-23)$ over the interval $0 \le x < 360^{\circ}$. If the solutions are denoted A, B, C and D, where A < B < C < D, compute (A,B,C,D).

PLAYOFFS - 2015

Team Round - Place all answers on the team round answer sheet.

- 1. For $x \in \left[0, \frac{\pi}{2}\right]$, determine the <u>largest</u> solution to $2\sin x \cdot \cos x \cdot \cos(2x) \cdot \cos(4x) \cdot \cos(8x) \ge \frac{1}{16}.$
- Given the parabola $y = \frac{x^2}{4p}$ with p > 0, let F be the focal point, let M lie on the parabola in the first quadrant with an x-coordinate of a, and let O be the origin. If ΔMOF is isosceles with OF = OM, compute the ratio $\frac{a^2}{p^2}$.
- 3. Compute all ordered pairs (x, y) which satisfy the following system of equations:

$$\begin{cases} x^2 - y^2 = 1\\ xy - 2y + x = 2 \end{cases}$$

- 4. Consider two geometric sequences of positive real numbers. The first three terms of the first sequence are the same as the first three terms of the second, <u>but</u> in reverse order. The sum of the first six terms of one sequence is equal to 8 times the sum of the first six terms of the other sequence. If the common ratios are r and m, where r < m, compute the ordered pair (r, m).
- 5. Let $S = \{10, 11, 12, ..., 18, 19\}$. If seven numbers are chosen from S at random, compute the probability that the sum of the remaining three numbers is divisible by 10.
- 6. One term of $\left(x^3 + \frac{1}{x^2}\right)^{12}$ is Px^{11} . Another term of the expansion is Px^n , $n \ne 11$. Find the ordered pair (P, n).

PLAYOFFS - 2015

Answer Sheet

Round 1

- 1 6
- 2. 31
- 3. <u>1 1</u> 35

Round 2

- 1. 10
- 2. $\frac{27}{5}$ or $\frac{3}{5}$
- 3. 4^{100} , 3^{120}

Round 3

- 1.8:5:2
- 2. $272 96\sqrt{2}$
- 3. $\frac{a^4}{4a^2-c^2}$

Round 4

- 1. 0, 2, -2
- 2. $\frac{21}{4}$ or 5.25
- 3. $165x^{16}$

Round 5

- 1. (25, 8, 2, 2)
- 2. 72
- 3. (3,2)

Round 6

- 1. $\left(-54\sqrt{3}, 54\right)$
- 2. $0.28 \text{ or } \frac{7}{25}$
- 3. (32, 152, 272, 310)

Team

- $1. \quad \frac{41\pi}{96}$
- 2. $4\sqrt{5} 8$
- 3. $(2,\pm\sqrt{3}), (\pm\sqrt{2},-1)$
- $4. \quad \left(\frac{1}{2}, 2\right)$
- 5. $\frac{1}{10}$
- 6. (792,1)