PLAYOFFS - 2016

Kot	and 1: Arithmetic and Number Theory
	1.
	2
	3.
1.	$4B3C_9$ is a 4-digit base 9 number such that $C = 3B$. What is the <u>base 9 sum</u> of all possible numbers satisfying the given condition?
2.	$ABCD$ is a four-digit positive integer such that D is twice C , $D \neq 0$, and BCD is a three-digit integer that is twice the three-digit integer ABC . Compute all possible ordered quadruples (A, B, C, D) . (Proper ordered quadruple notation must be used.)
3.	Compute the number of positive integers n less than 50 such that $n-3$ and $n+3$ are both prime.

PLAYOFFS - 2016

Round 2: Algebra 1

1.	

1. Compute the number of degrees Fahrenheit such that the number given by the Fahrenheit scale for a temperature is twice the number given by the Centigrade scale for the same temperature. (Remember the relationship between Fahrenheit and Celsius is linear with 0°C = 32°F and 100°C = 212°F).

- 2. In trying to solve an equation of the form $\frac{1}{a} + \frac{2016}{x} = 4$, Jean miswrote the equation as $\frac{2016}{ax} = 4$, but ended up with the same answer as the original equation. Compute the value of a for which this is possible.
- 3. Compute all values of x (a real number) for which $\sqrt{\frac{x^2+3}{x}} \sqrt{\frac{x}{x^2+3}} = \frac{3}{2}$.

PLAYOFFS - 2016

Round 3: Geometry

1	 		 	_
2	 · · · · · · · · · · · · · · · · · · ·		 	_
3.				

- 1. Q lies in the exterior of $\angle ABC$. If $m\angle ABQ = 97$ and $m\angle CBQ = 84$, compute all possible measures of $\angle ABC$ between 0° and 180°.
- 2. ABCDEFGH is a cube, each edge having a length of 30 units. ABCD is a cube face and EFGH is its opposite face. \overline{AG} , \overline{BH} , \overline{CE} and \overline{DF} are cube diagonals. M is $\frac{1}{3}$ of the way from D to C. N is the midpoint of \overline{CG} . MCNB is a pyramid. Determine the number of cubic units in the space of the cube exterior to the pyramid.

3.. \overline{AB} and \overline{DC} are secants of a circle and meet outside the circle at P as shown in the diagram. If the degree measure of \overline{AD} is 8 times the degree measure of $\overline{\angle BAC}$, compute the largest possible integer value for the measure in degrees of $\overline{\angle P}$.

PLAYOFFS - 2016

Round 4: Algebra 2

1.		

1. Compute all real values of x for which
$$(\log_6 x)^2 + 3\log_6 (6x) - \frac{1}{2}\log_{\sqrt{6}} 6 = 0$$

2. If
$$f(x) = \frac{ax}{x+2}$$
, $x \ne -2$, compute a so that f is its own inverse.

3. Given a line for which the x-intercept, slope, and y-intercept, taken in this order, form an arithmetic sequence with a common difference of $\frac{15}{2}$. Compute <u>all</u> possible values of the y-intercept.

PLAYOFFS - 2016

Round 5: Analytic Geometry

•

2. _____

3._____

1. The intersection points of the graphs of $y = 2x^2 - 4x - 1$ and y = -4x + 7 determine a line segment. Compute the slope of the perpendicular bisector of that line segment.

2. An ellipse has an area of 100π and an eccentricity of 0.6. Compute the length of a latus rectum in this ellipse. (note: eccentricity of an ellipse is the distance between its center and either of its two foci; The chord through a focus and perpendicular to the major axis of the ellipse is called its latus rectum.)

3. Two squares are placed with a side on the x-axis and a corner on $y = x^2$ as shown. A side of the smaller square lies on a side of the larger. If the ratio of their areas is 81, find the side of the smaller square.

PLAYOFFS - 2016

Round 6: Trig and Complex Numbers

- 1.
- 2.
- 3. _(____,___)
- 1. For how many positive integral values of *n* less than 1000 is $\left(\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}\right)^n$ a real number?

2. Compute the value of x if $tan(sin^{-1}x) = 2$.

In $\triangle ABC$, $AB = \cos \angle A$, $AC = \sin \angle A$, and $BC = \frac{1}{2}$. One of the triangles determined by this data is isosceles. The length of \overline{AC} for the non-isosceles triangle can be written as $\frac{a+\sqrt{b}}{c}$. Determine the ordered triple (a,b,c)

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2016

Team Round - Place all answers on the team round answer sheet.

1. Compute all ordered pairs of real numbers (x, y) for which

$$\frac{9x}{2} + \frac{7}{4y} + \frac{9}{16} = 0$$
 and $\frac{4}{3x} = \frac{y}{2} - 8$

Answers must be in proper ordered pair notation.

- 2. Let the coordinates of point P be (x, y), where x < 0 and y > 0. The distance from point P to the point Q(3,7) is $\sqrt{65}$. Find all possible ordered pairs (x, y) where x and y are integers. Answers must be in proper ordered pair notation.
- 3. ABCD is a square of side 60 units and BF = CE = 20. Compute the number of square units in the area of AFHD.

4. A circle whose area is 16π square units is tangent to the positive x-axis and to a side of a regular hexagon of side 12 units. The hexagon's center is on the positive y-axis and its bottom side lies on the x-axis. Compute the coordinates of the point of tangency of the circle and the hexagon.

5. In the cube shown, \underline{A} and B are the trisection points of edges \overline{MP} and \overline{NP} , respectively, that are closest to \underline{P} . C and D are the trisection points on edges \overline{RQ} and \overline{SQ} , respectively, that are closest to Q. If the area of ABCD is $\sqrt{17}$, compute the surface area of the cube.

6. Let x and y be integers between 1 and 9 inclusive. Compute the number of ordered pair solutions (x, y) such that $\log_x y + \log_y x^2 = 3$.

PLAYOFFS - 2016

Answer Sheet

Round 1

1 134109

2. (1, 2, 4, 8) and (3, 7, 4, 8)

3.9

Round 2

1. 320

 $2. \quad \frac{1}{2}$

3. 1, 3

Round 3

1.13,179

2. 25500

3.107

Round 4

1. $\frac{1}{6}$, $\frac{1}{36}$

2. -2

3. $\frac{25}{2}$, 9

Round 5

1. $\frac{1}{4}$

2. $\frac{32\sqrt{5}}{5}$

3. 4

Round 6

1. 142

2. $\frac{2\sqrt{5}}{5}$ OR $\frac{12\sqrt{5}}{5}$ 3. (-1, 13, 4) 5

Team

1. $\left(-\frac{3}{32}, -\frac{112}{9}\right), \left(-\frac{2}{9}, 4\right)$

2. (-1,14), (-4,3), (-4,11), (-5,6), (-5,8)

3. 2460

4. 2√3,6 (6+2√3,6)

5. $27\sqrt{2}$

6. 10