MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2017 - SOLUTIONS

Round 1: Arithmetic and Number Theory

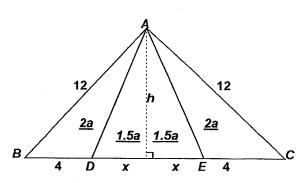
- 1. The two-digit reversible primes are 11, 13, 17, 31, 37, 71, 73, 79, 97. There are **9** of them.
- 2. $p^3 + 6p^2 = p^2(p+6)$. Thus, p+6 must be a perfect square for 0 . We can't have <math>p+6 equal to either 1 or 4, since that makes p negative. p+6 can't be larger than 100, since otherwise, p is greater than 100. Thus, p+6=9, 16, 25, 36, 49, 64, 81, and 100. There are **8** values of p that work.
- 3. Note that $4+4^2+4^3+4^4=340$. Since $4^{n+1}+4^{n+2}+4^{n+3}+4^{n+4}=4^n\left(4+4^2+4^3+4^4\right)=340$, then groups of 4 consecutive terms have a sum divisible by 17. Since 2016=4(504), then the sum $4+4^2+4^3+...+4^{2016}$ is divisible by 17. When $1+4+4^2+4^3+...+4^{2016}$ is divided by 17, there is a remainder of $\underline{1}$.

Round 2 Algebra 1

- 1. The discriminant must be positive and equal to a perfect square. Thus, $20^2 4 \cdot 7 \cdot k = n^2$ meaning that $400 28k > 0 \rightarrow k < 14\frac{2}{7}$. For k = 14, 13, and 12, respectively, the discriminant equals 8, 36, and 64. The answer is 13.
- 2. $\frac{4}{y+3} 2 \frac{2y}{3-y} + \frac{12y}{9-y^2} \Leftrightarrow \frac{4}{y+3} \frac{2}{1} + \frac{2y}{y-3} \frac{12y}{(y+3)(y-3)}$ Combining terms, $\frac{4(y-3) 2(y^2 9) + 2y(y+3) 12y}{(y+3)(y-3)} = \frac{-2y+6}{(y+3)(y-3)}$ $= \frac{-2(y-3)}{(y+3)(y-3)} = \frac{2}{y+3}$
- 3. $(By+Gx) = (Bx+Gy)+10 \Rightarrow (By+Gx)-(Bx+Gy)=10$ $\Rightarrow B(y-x)-G(y-x)=10 \Leftrightarrow (B-G)(y-x)=10$ (Note: $B>G \Rightarrow y>x$ is consistent with the hamburger costing more than the roll.) But more importantly, B-G can only be a factor of 10, namely, 1, 2, 5, and 10.

Round 3 - Geometry

area $(\Delta ACE) = \frac{1}{2} \cdot h \cdot 4 = 2h$ 1. area $(\Delta ADE) = 2\left(\frac{1}{2} \cdot h \cdot x\right) = hx$ $\frac{2h}{hx} = \frac{4}{5} \Rightarrow x = 2.5 \Rightarrow BC = 2(4+2.5) = \underline{13}.$ By



Alternately, since area (ΔACE) : area $(\Delta ADE) = 4:5$ and these triangles have the same altitude from vertex A, their bases must be in a 4:5 ratio, implying DE = 5 and BC = 13.

- From the three tangent lines, we see that the diameter of C is 2 + 8 = 10, so its radius is 5. If 2. the center were at (-3, -8). The line $y = \frac{1}{3}x + \frac{14}{3}$ would not intersect circle C at all. Thus, the center is (-3, 2). The equation of the circle is $(x+3)^2 + (y-2)^2 = 25$. The equation of the line can be written as x-3y=-14. Substituting for x, we get $(3y-11)^2+(y-2)^2=25$ or $9y^2 - 66y + 121 + y^2 - 4y + 4 - 25 = 0$. Collecting terms we get $10y^2 - 70y + 100 = 0$ or $y^2 - 7y + 10 = 0$. Then y = 2 or y = 5. Substituting we get x = -8 or x = 1. The points of intersection are (-8, 2) and (1, 5).
- 3. The number of diagonals is given by

$$d = \frac{n(n-3)}{2} \Rightarrow (n,d) = (4,2), (5,5), (6,9), (7,14), (8,20), (9,27), (10,35) - Bingo!$$

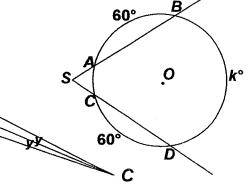
In a regular polygon, the angle measure of an interior angle is given by

$$\frac{180(n-2)}{n} \Rightarrow \frac{180(10-2)}{10} = 18 \cdot 8 = 144$$

Let the other two angles have measures

$$2x + 2y + 144 = 180 \Rightarrow x + y = 18$$
.

 $(2x)^{\circ}$ and $(2y)^{\circ}$. Then:



The obtuse angle formed by the angle bisectors measures $180^{\circ} - 18^{\circ} = 162^{\circ}$. The minor arc \widehat{AC} has measure $360^{\circ} - (162^{\circ} + 2 \cdot 60^{\circ}) = 78^{\circ}$

Therefore,
$$m \angle S = \frac{1}{2} (162 - 78) = \underline{42}^{\circ}$$
.

Round 4 - Algebra 2

1.
$$x^2 4^x - 2^{2x+2} - 64x^2 + 256 = x^2 4^x - 4^x 4 - 64(x^2 - 4) = (2^x)^2 (x^2 - 4) - 64(x^2 - 4) = (2^x)^2 - 64 \cdot (x^2 - 4) = (2^x + 8)(2^x - 8)(x + 2)(x - 2).$$

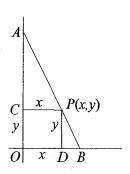
2.
$$S_6 = \frac{6}{2}(2a+5d) = 261$$
 and $S_9 = \frac{9}{2}(2a+8d) = 297 \Rightarrow \begin{cases} 2a+5d=87 \\ 2a+8d=66 \end{cases} \Rightarrow 3d = -21 \Rightarrow d = -7$.
 $\Rightarrow (a, d) = (61, -7)$.

3.
$$P(0) = 100 \cdot \frac{3+4^0}{1+2^0} = 200$$
. We want t such that $P(t) = 100 \cdot \frac{3+4^t}{1+2^t} = 400 \rightarrow \frac{3+4^t}{1+2^t} = 4 \rightarrow 3+4^t = 4+4\cdot 2^t \rightarrow \left(2^t\right)^2 - 4\cdot 2^t - 1 = 0$. Then $2^t = \frac{4\pm\sqrt{16-4\cdot 1}}{2} = 2\pm\sqrt{5}$. Choose $2^t = 2+\sqrt{5}$ making $t = \log_2\left(2+\sqrt{5}\right)$. Thus, $K = 2+\sqrt{5}$.

Round 5 - Analytic Geometry

1. The graph is an inverted V with a vertex at $D\left(\frac{5}{2},6\right)$. It intersects the y-axis at A(0,1) and the x-axis at $C\left(\frac{11}{2},0\right)$. Let $B=\left(\frac{5}{2},0\right)$ and let O be the origin. The region bounded by the function and the axes breaks up into trapezoid ADBO and right triangle DBC. The area of ADBO is $\frac{1}{2} \cdot \frac{5}{2} \left(1+6\right) = \frac{35}{4}$. The area of DBC is $\frac{1}{2} \cdot \left(\frac{11}{2} - \frac{5}{2}\right) \cdot 6 = 9$. The total is $\frac{71}{4}$.

Or: Let $E\left(-\frac{1}{2},0\right)$ be the left hand x-intercept. The area of the region bounded by the function and the axes is the difference between the areas of $\triangle EDC$ and $\triangle EOA$ which is $\frac{1}{2}\left(\frac{11}{2}-\frac{1}{2}\right)6-\frac{1}{2}\cdot\frac{1}{2}\cdot 1=\frac{71}{4}$.



2. In the diagram, AP = 12 and PB = 6, so $AC = \sqrt{144 - x^2}$. Since $\triangle ACP \square \triangle PDB$, $\frac{\sqrt{144 - x^2}}{y} = \frac{12}{6} \rightarrow 144 - x^2 = 4y^2$. When P is the vertex of a square, x = y, giving $144 = 5x^2$

$$\rightarrow x^2 = \frac{144}{5}$$
 and that is the area of the square. Ans: $\frac{144}{5}$

3. If the slope is m, then from y-8=m(x-4) we obtain $B=\left(\frac{4m-8}{m},0\right)$. If the x-coordinate of B is greater than 4, B lies to the right of A and the slope is negative. Then $\frac{1}{2}\cdot\left(\frac{4m-8}{m}\right)\cdot 8=20 \to m=-8$. If the x-coordinate of B is less than 4, B lies to the left of A and the slope is positive, making $\frac{4m-8}{m}$ negative. Then $-\frac{1}{2}\cdot\left(\frac{4m-8}{m}\right)\cdot 8=20 \to m=\frac{8}{9}$. The slopes are -8 and $\frac{8}{9}$.

Round 6 - Trig and Complex Numbers

1.
$$\csc \alpha = \frac{25}{24}$$
, where $90^{\circ} < \alpha < 180^{\circ} \Rightarrow \sin \alpha = \frac{24}{25}$, $\cos \alpha = -\frac{7}{25}$.
 $\cot \beta = \frac{12}{5}$, where $180^{\circ} < \beta < 270^{\circ} \Rightarrow \sin \beta = -\frac{5}{13}$ and $\cos \beta = -\frac{12}{13}$.
 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \left(-\frac{7}{25}\right)\left(-\frac{12}{13}\right) - \left(\frac{24}{25}\right)\left(-\frac{5}{13}\right) = \frac{84 + 120}{325} = \frac{204}{325}$.

- 2. If z = 1 + 2i, then $\overline{z} = 1 2i$, and $\frac{1}{z} = \frac{1}{1 + 2i} \cdot \frac{1 2i}{1 2i} = \frac{1 2i}{5}$. In the rectangular coordinate plane, we have the vertices at A(1,2), B(1,-2), and $C(\frac{1}{5},-\frac{2}{5})$. Let \overline{AB} be the base; here AB = 4. The distance from C to \overline{AB} is $1 \frac{1}{5} = \frac{4}{5}$ so the area of $\triangle ABC$ is $\frac{1}{2} \cdot \frac{4}{5} \cdot 4 = \frac{8}{5}$.
- 3. $\tan \theta = \frac{\frac{1}{3} \frac{1}{2}}{1 \left(\frac{1}{3}\right)\left(-\frac{1}{2}\right)} = \frac{-\frac{1}{6}}{\frac{7}{6}} = -\frac{1}{7}$. θ must be in quadrant $4 : \sin \theta = \frac{-1}{\sqrt{50}}$ and $\cos \theta = \frac{7}{\sqrt{50}}$.

 Then $\sin 2\theta = -\frac{14}{50} = \frac{7}{25}$

Team Round

1. Considering only prime values of n + 1,

 $n+1=2 \Rightarrow 9(1)^4+121(2)^2=493=P^2$ (rejected, since $19^2=361$ is too small, $23^2=529$ is too large and there are no other primes between 19 and 23)

$$n+1=3 \Rightarrow 9(2)^4+121(3)^2=144+1089=1233=P^2$$
 (rejected, $31^2=961$ and $37^2=1369$)
 $n+1=5 \Rightarrow 9(4)^4+121(5)^2=2304+3025=5329$

Since the squares of 70 and 75 are easily computed ($70^2 = 4900$ and $75^2 = 5625$) – see below, we have trapped the required value. The only possible primes are 71 and 73. Only 73^2 ends in 9 and, multiplying out, we get exactly 5239. Thus, P = 73.

<u>FYI #1:</u> How was 75^2 <u>easily</u> determined to be 5625? Clearly, the rightmost two digits of the square of a number ending in 5 are always 25. Symbolically, $(x5)^2 = ...25$.

Not so clearly, the missing digits may be found by multiplying x(x + 1). For example,

$$25^2$$
: $2(3) = 6 \Rightarrow 625$

$$35^2: 3(4) = 12 \Rightarrow 1225$$

$$45^2: 4(5) = 20 \Rightarrow 2025$$

$$105^2:10(11)=110 \Longrightarrow 11025$$

Why does this work?

The number ending in 5, namely $\underline{x5}$, can be represented algebraically as 10x + 5. Squaring,

$$(10x+5)^2 = 100x^2 + 2(5)(10)x + 25 = 100x^2 + 100x + 25 = 100(x^2+x) + 25 = 100\underline{x(x+1)} + 25$$

The factor of 100 simply shifts the product two places to the left and insures that the rightmost two digits are 25. A very useful shortcut indeed! In fact, x may be greater than 9.

Check it out:
$$105^2 = 11025$$
, $115^2 = 13225$, $125^2 = 15625$,..., $205^2 = 42025$,...

Since $91 = 7 \cdot 13$, if m is a multiple of 7, then n is also; and, if m is a multiple of 13, then n is also. Thus, the rejected ordered pairs are (7,84),...,(42,49), (13,78),(26,65),(39,52). There are 45 possible ordered pairs (m,n), where m+n=91. Therefore,

$$S = (1 + \dots + 45) - 7(1 + \dots + 6) - 13(1 + \dots + 3) = \frac{45 \cdot 46}{2} - 7\frac{6 \cdot 7}{2} - 78$$

$$45 \cdot 23 - 3 \cdot 49 - 78 = 3(15 \cdot 23 - 49 - 26) = 3(345 - 75) = 3(270) = 810$$

8 can only be written as the sum of integer perfect squares in one way, namely 4 + 4. Thus, $(x-1)^2 = 4 \Rightarrow x = -1$, 3 or $(y-5)^2 = 4 \Rightarrow y = 3$, 7 and the square has vertices at S(3, 3), R(3, 7), Q(-1, 7) and T(-1, 3). The diagonals intersect at P(1, 5). This is the center of the ellipse. Since $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ is the equation of a horizontal ellipse, the foci lie on the vertical sides of the square and c = 2. The vertical sides of the square are focal chords of

the ellipse. Therefore, $\frac{2b^2}{a} = 4 \Rightarrow b^2 = 2a$.

Since, for any ellipse, $a^2 = b^2 + c^2$, we have $a^2 - b^2 = 4$.

Substituting, $a^2 - 2a - 4 = 0 \Rightarrow \boxed{a = \frac{2 + \sqrt{20}}{2} = 1 + \sqrt{5}}$

$$a^2 = 6 + 2\sqrt{5}$$
 and $b^2 = 2 + 2\sqrt{5}$.

$$(abc)^2 = a^2b^2c^2 =$$

$$(6+2\sqrt{5})(2+2\sqrt{5})(4) = 16(3+\sqrt{5})(1+\sqrt{5}) = 16(8+4\sqrt{5}) = 64(2+\sqrt{5}) \Rightarrow (64,2,5)$$

4. Applying the Product-Chord Theorem at point T,

$$(r+b)^2=a(2r+a)$$

$$\Rightarrow r^2 + 2br + b^2 = 2ar + a^2 \Leftrightarrow r^2 + 2(b-a)r + b^2 - a^2 = 0$$

Solving for r, using the quadratic formula, we have

$$r = \frac{2(a-b) \pm \sqrt{4(b-a)^2 - 4(b^2 - a^2)}}{2}$$

$$\Rightarrow r = (a-b) \pm \sqrt{2a(a-b)} + a^2 = (a-b) \pm \sqrt{2a(a-b)}$$

For r to be rational, 2a(a-b) must be a perfect square x^2 .

$$a = 2 \Rightarrow b = 1$$
 - rejected $(a \neq 2b)$

$$a = 3 \Rightarrow b = 1, 2 \Rightarrow x^2 = 6(2,1)$$
 - rejected

$$a = 4 \Rightarrow b = 1, 3 \Rightarrow x^2 = 8(3, 1)$$
 - rejected

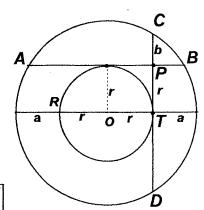
$$a = 5 \Rightarrow b = 1, 2, 3, 4 \Rightarrow x^2 = 10(4, 3, 2, 1)$$
 - rejected

$$a = 6 \Rightarrow b = 1, 2, 4, 5 \Rightarrow x^2 = 12(5, 4, 2, 1)$$
 -rejected

$$a = 7 \Rightarrow b = 1, 2, 3, 4, 5, 6 \Rightarrow x^2 = 14(6, 5, 4, 3, 2, 1)$$
 - rejected

$$a = 8 \Rightarrow b = 1, 2, 3, 5, 6, 7 \Rightarrow x^2 = 16(7, 6, 5, 3, 2, 1) \Rightarrow x^2 = 16, r = (8 - 7) \pm \sqrt{16} \Rightarrow r = 5$$

Thus, (a,b,r) = (8,7,5).



B

At least 4 means 4, 5 or 6 heads. Consider the expansion of $(p+q)^6$, where q, the probability of tails, = (1-p). $(p+q)^6 = p^6 + 6p^5q + 15p^4q^2 + 20p^3q^3 + 15p^2q^4 + 6pq^5 + q^6$. (Note the coefficients from the 6^{th} row of Pascal's Triangle.) The first term represents the probability of exactly 6 heads. The second term represents the probability of exactly 5 heads, since there are 6 possible arrangements of 5H's and 1 T. $\left(\frac{6!}{5!1!}\right)$ - THHHHHH, HTHHHHH, ..., HHHHHHT The third term represents the probability of exactly 4 heads, since there are 15 possible arrangements of 4H's and 2 T. $\left(\frac{6!}{4!2!}\right)$ - TTHHHHH, THTHHHH, THHHHHTH, THHHHHTTH,

..., ННННТТ

P(
$$\geq 4 \text{ heads}$$
) = $p^6 + 6p^5q + 15p^4q^2 = p^6 + 6p^5(1-p) + 15p^4(1-p)^2 > 0.5$
 $p^4(p^2 + 6p(1-p) + 15(1-p)^2 = p^4(10p^2 - 24p + 15) > 0.5$

Constructing a lookup table, we require $P > \frac{5000}{10000}$.

The following table summarizes the numerators for possible values of p.

p	P	Numerator
.1	$\frac{1}{10^4} \Big(10 \cdot 1.1^2 + .6 \Big)$	12.7 < 5000
.2	$\frac{2^4}{10^4} (10 \cdot 1 + .6)$	16(10.6) < 5000
.3	$\frac{3^4}{10^4} (10 \cdot .81 + .6)$	81(8.7) < 5000
.4	$\frac{4^4}{10^4} (10 \cdot .64 + .6)$	256(7) < 5000
.5	$\frac{5^4}{10^4} (10 \cdot .49 + .6)$	625(5.5) < 5000
.6	$\frac{6^4}{10^4} (10 \cdot .36 + .6)$	1296(4.2) > 5000 (BINGO!)

Thus, to the nearest tenth, $p = \underline{0.6}$. (In fact, the last two rows of the table would have been sufficient.)

6. Let $(\sin P, \sin Q, \sin R) = (2n, 3n, 4n)$. Invoking the Law of Sines, $\frac{\sin P}{p} = \frac{\sin Q}{q} = \frac{\sin R}{r}$, without loss of generality, we may let the sides of $\Delta PQR(p,q,r) = (2,3,4)$. Invoking the Law of Cosines, we have

$$\begin{cases} 2^{2} = 3^{2} + 4^{2} - 2 \cdot 3 \cdot 4 \cos P \\ 3^{2} = 2^{2} + 4^{2} - 2 \cdot 2 \cdot 4 \cos Q \Leftrightarrow \\ 4^{2} = 2^{2} + 3^{2} - 2 \cdot 2 \cdot 3 \cos R \end{cases} \Leftrightarrow \begin{cases} 4 = 25 - 24 \cos P \\ 9 = 20 - 16 \cos Q \Leftrightarrow (\cos P, \cos Q, \cos R) = \left(\frac{7}{8}, \frac{11}{16}, -\frac{1}{4}\right). \end{cases}$$

Multiplying through by 16 to clear the fractions, the required ratio is 14:11:-4 and (a,b,c)=(14,11,-4).