

April 4, 2019

Round 1: Arithmetic and Number Theory

1. (1 point) Find the units digit in the number represented by 2019²⁰¹⁹.

2. (2 points) If $2^x \cdot 5^y \cdot 3^z = 28,800,000$, evaluate x + y + z.

3. (3 points) For what value of n does $1! \cdot 1 + 2! \cdot 2 + 3! \cdot 3 + \cdots + n! \cdot n = 2019! - 1$?

- 1) _____
- 2)_____
- 3)

April 4, 2019

Round II: Algebra I, (Real numbers and no transcendental functions)

1.(1 point) Solve for all real values of y that satisfy the condition 6y + 7 > 8y + 2 > 4y + 1.

- 2. (2 points) Find all ordered pairs of integers (x, y) that satisfy all 4 conditions:
 - 1) -8 < x < 3
 - 2) -10 < y < -2
 - 3) |x-y| = 2
 - 4) |x + y| = 10
- 3. (3 points). Find all values of x that satisfy $\left|1-\left|1-\left|1-\left|1-x\right|\right|\right| = 0$.

- 1)_____
- 2)
- 3)_____

April 4, 2019

Round III: Geometry (figures are not to scale)

1. (1 point). Trapezoid ABCD has bases \overline{AB} and \overline{CD} , and $m \angle B = 112^{\circ}$ and $m \angle BCA = 33^{\circ}$. Line segments \overline{AC} and \overline{AD} have equal length. Find $m \angle DAC$.

2. (2 points) The diagram shows circles ω_B and ω_D externally tangent at C. The centers of the circles are B and D respectively, and each circle has radius 1. Ray \overrightarrow{LD} passes through B and its other intersection point with ω_B

is A. Ray \overline{LS} is tangent to ω_D at S and intersects ω_B at P and Q. If LA = 1.5, find the distance PQ.

3. (3 points) Equilateral $\triangle ABC$ of side length 6 is inscribed in circle ω . A smaller circle is internally tangent to ω at R and is tangent to \overline{AB} and \overline{AC} at P and Q, respectively. Find the distance PQ.

Answers

1)

2)

3)_____

April 4, 2019

Round IV: Algebra II

1. (1 point) Solve for $x \in \mathbb{R}$: $\log_4 \left(\log_{\frac{1}{4}} (x) \right) = \frac{1}{2}$.

2. (2 points) Solve for $x \in \mathbb{R}$: $x^{\frac{3}{5}} + 2x^{\frac{2}{5}} = 9x^{\frac{1}{5}} + 18$.

3.(3 points) If a and b are positive numbers that satisfy $a + \frac{1}{b} = 9$ and $b + \frac{4}{a} = 1$ then what is the value of ab?

- 1)
- 2) _____
- 3)_____

April 4, 2019

Round V: Analytic Geometry

1. (1 point) If the distance between (1, 3) and (a, 2a) is 1 unit, find all possible values of a.

2. (2 points) Find the possible values of p such that the equation $x^2 + y^2 - 6x + py + 57 = 0$ has exactly one solution (x, y).

3. (3 points) A rectangle with sides parallel to the axes is inscribed in the ellipse with minor axis endpoints (5, 8) and (5, 2) and major axis endpoint (-1, 5). If each focus of the ellipse lies on a side of the rectangle, find the area of the rectangle.

- 1)_____
- 2)_____
- 3)_____

April 4, 2019

Round VI: Trigonometry, Complex Numbers

1. (1 point) Toby walks 5 miles to the north and then walks 4 miles to the southwest. He is now d miles from his starting point. Find d^2 .

2. (2 points) Lines L_1 and L_2 both have positive slope. The slope of L_2 is four times that of L_1 . The angle L_2 makes with the positive *x*-axis is twice the equivalent angle for L_1 . Find the slope of L_1 .

3. (3 points) PQR is a right triangle with right angle at P. Points A and B lie on QR with QA = RB = $\frac{QR}{4}$. Furthermore, there is an acute angle θ with sin θ = PA and cos θ = PB. Find the length QR.

Answers
1) _____
2) ____

April 4, 2019

TEAM ROUND

- 1) For what positive integer value(s) of n is $n^2 132$ a perfect square?
- 2) Let $\lfloor x \rfloor$ represent the greatest integer less than or equal to x and let $\{x\}$ represent the fractional part of x, $x \lfloor x \rfloor$. Let $y = \frac{33\{\sqrt{2}\} + 62}{\{\sqrt{2}\} + 4}$. Find $\lfloor y \rfloor$.
- 3) In $\triangle ABC$, M is the midpoint of side \overline{BC} and point N divides side \overline{AC} in a 2:3 ratio. Line segments \overline{AM} and \overline{BN} intersect at X.

Compute the quantity $\frac{NX}{NB}$

- 4). If $x^4 + ax^2 + bx 36 = 0$ has 4 distinct integer solutions for x, find all possible ordered pairs (a,b).
- 5) Consider 2 circles in the xy-plane, one with equation $x^2 + y^2 1 = 0$ and the other with equation $x^2 + y^2 + x \sqrt{3}y + k = 0$. The circles have centers C and M and intersect each other at points S and L. If 0 < k < 1 and the area of quadrilateral CSML is $\frac{1}{2}$, find the value of k.
- 6) Note that, by De Moivre's theorem

$$\sum_{k=0}^{\infty} \frac{1}{2^k} \left(\cos\theta + i\sin\theta\right)^k = \sum_{k=0}^{\infty} \frac{1}{2^k} \left(\cos k\theta + i\sin k\theta\right).$$

Compute the sum $\sum_{k=0}^{\infty} \frac{1}{2^k} \cos \frac{k\pi}{3}$.

	•		*	•		
				,		
				*	*	f
•						