MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2015 - SOLUTIONS

Round 1 Arithmetic and Number Theory

- 1. We require that $2^A + A^2 = 100$. Since the sum is even, A must be even. By brute force, $2^6 + 6^2 = 64 + 36 = 100$, yielding A = 6
- 2. If a = 1 to 5, b = 1 to 4, giving 20 ordered pairs. If a = 6 to 8, b = 1 to 3, giving 9 ordered pairs. If a = 9, b = 1 or 2, giving 2 ordered pairs. Thus, there are a total of <u>31</u> ordered pairs.
- 3. The number of ways of filling the grid to satisfy the stated property is $\begin{bmatrix} 4 & 3 & 2 \\ 2 & 1 & 1 \\ 4 & 3 & 2 \end{bmatrix}$, whereas a

random fill could be done in $\begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$ ways. Thus, the probability is

$$\frac{2(4!)^2}{9!} = \frac{2 \cdot 4 \cdot 3}{9 \cdot 8 \cdot 7 \cdot 16 \cdot 5} = \frac{1}{315} \frac{1}{35}$$

Round 2 Algebra 1

1.
$$312_{(x-1)} = 211_{(x+1)} \Leftrightarrow 3(x-1)^2 + (x-1) + 2 = 2(x+1)^2 + (x+1) + 1$$
$$\Leftrightarrow 3x^2 - 5x + 4 = 2x^2 + 5x + 4 \Leftrightarrow x^2 - 10x = x(x-10) = 0 \Rightarrow x = \underline{10}$$

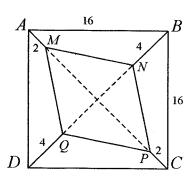
2.
$$\left(\frac{1}{a-3}\right)^2 = \frac{25}{144} \Rightarrow a = 3 \pm \frac{12}{5} \left[a = \frac{27}{5}, \frac{3}{5}\right]$$

3. 1^{160} and 9^{0} both equal 1 and are ignored. Convert each of the in-between values to powers of 20. $2^{140} = \left(2^{7}\right)^{20} = 128^{20}$, $3^{120} = \left(3^{6}\right)^{20} = 729^{20}$, $4^{100} = \left(4^{5}\right)^{20} = 1024^{20}$, $5^{80} = \left(5^{4}\right)^{20} = 625^{20}$, $6^{60} = \left(6^{3}\right)^{20} = 216^{20}$, $7^{40} = \left(7^{2}\right)^{20} = 49^{20}$

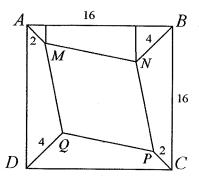
The larger the base is, the larger the power. Thus, $(A, B) = \underline{(4^{100}, 3^{120})}$.

Round 3 - Geometry

- Since the exterior angles of any triangle (one per vertex) always total 360°, we have $7n+10n+13n=30n=360 \Rightarrow n=12 \Rightarrow (m\angle 1, m\angle 2, m\angle 3) = (84,120,156)$ $\Rightarrow (m\angle 4, m\angle 5, m\angle 6) = (96,60,24)$. Thus, the required ratio is 8:5:2
- 2. <u>Method 1</u>: Since the 4 trapezoids are congruent, MNPQ is a rhombus. Since $AC = DB = 16\sqrt{2}$, then $MP = 16\sqrt{2} 4$ and $QN = 16\sqrt{2} 8$. Using the area formula $\frac{d_1 \cdot d_2}{2}$ gives $\frac{\left(16\sqrt{2} 4\right)\left(16\sqrt{2} 8\right)}{2} = \frac{512 64\sqrt{2} 128\sqrt{2} + 32}{2} = \frac{272 96\sqrt{2}}{2}$



Method 2: Drop perpendiculars from M and N to \overline{AB} . The first is $\sqrt{2}$ units long, the second is $2\sqrt{2}$ units long. They divide \overline{AMNB} into two 45-45-90 right triangles with areas of $\frac{1}{2} \cdot \sqrt{2} \cdot \sqrt{2} = 1$ and $\frac{1}{2} \cdot 2\sqrt{2} \cdot 2\sqrt{2} = 4$, respectively, and one trapezoid whose bases have lengths of $\sqrt{2}$ and $2\sqrt{2}$ and whose height is $16 - 3\sqrt{2}$.



The area of the trapezoid is $\frac{1}{2} \left(16 - 3\sqrt{2} \right) \left(3\sqrt{2} \right) = 24\sqrt{2} - 9$. Thus, the area of *AMNB* is $24\sqrt{2} - 9 + 5 = 24\sqrt{2} - 4$. The sum of the areas of the four congruent trapezoids is $96\sqrt{2} - 16$. Then the area of *MNPQ* is $16^2 - \left(96\sqrt{2} - 16 \right) = \boxed{272 - 96\sqrt{2}}$.

3. Let h denote the altitude from the vertex of the isosceles triangle to its base. Since the radius R of a circle circumscribed about a triangle with sides x, y, and z is

$$\frac{xyz}{4 \cdot \text{area of } \Delta}$$
, we have $R = \frac{a^2c}{4\left(\frac{1}{2}hc\right)} = \frac{a^2}{2h}$. From the Pythagorean theorem,

$$a^2 = h^2 + \left(\frac{c}{2}\right)^2 \Rightarrow h^2 = \frac{4a^2 - c^2}{4}$$
. Squaring and substituting, $R^2 = \frac{a^4}{4a^2 - c^2}$.

Alternate Solution:

The diameter d of the circumscribed circle of a triangle is $\frac{\text{side}}{\sin(\text{opposite angle})}$. Consider A

as the vertex angle, then $\sin B = \sqrt{\frac{4a^2 - c^2}{2a}}$, so $d = \frac{2a^2}{\sqrt{4a^2 - c^2}}$.

Round 4 - Algebra 2

- 1. $n=0 \Rightarrow 1+1=\underline{2}$; $n=1 \Rightarrow i+\frac{1}{i}=i+(-i)=\underline{0}$; $n=2 \Rightarrow i^2+\frac{1}{i^2}=-1+(-1)=\underline{-2}$ $n=3 \Rightarrow i^3+\frac{1}{i^3}=-i+(i)=0$... and the cycle repeats.
- 2. $\left(\frac{\log 0.\overline{3}}{\log 81}\right) = \log_{81} \left(3^{-1}\right) = -\log_{81} 3 = -\frac{1}{4}, \quad \frac{\log 8}{\log 4} = \log_4 8 = \frac{3}{2}$ $-\frac{1}{4}x^2 + \frac{3}{2}x + 3 c = 0 \Leftrightarrow x^2 6x 4(3 c) = 0$

Equal roots require that the discriminant be zero. $36+16(3-c)=0 \Rightarrow c=\frac{84}{16}=\frac{21}{4}$

The expansion of $(1+x^2)^t$ is $\begin{pmatrix} t \\ 0 \end{pmatrix} 1 + \begin{pmatrix} t \\ 1 \end{pmatrix} (x^2)^1 + \begin{pmatrix} t \\ 2 \end{pmatrix} (x^2)^2 + \begin{pmatrix} t \\ 3 \end{pmatrix} (x^2)^3 + \begin{pmatrix} t \\ 4 \end{pmatrix} (x^2)^4 + \dots$ Therefore, $6 \cdot \begin{pmatrix} t \\ 2 \end{pmatrix} = \begin{pmatrix} t \\ 4 \end{pmatrix} \Rightarrow \frac{6t(-1)}{2!} = \frac{t(-2)(t-3)}{4!}$ $\Rightarrow 72 = (t-2)(t-3) \Rightarrow t^2 - 5t - 66 = 0 \Rightarrow (t-11)(t+6) = 0 \Rightarrow t = 11$ Finally, the ninth term in the expansion is $\begin{pmatrix} 11 \\ 8 \end{pmatrix} (x^2)^8 = \frac{11 \cdot 10 \cdot 9}{1 \cdot 2 \cdot 3} x^{16} = \frac{165x^{16}}{1 \cdot 2 \cdot 3}$.

Round 5 - Analytic Geometry

- 1. The equation can be rewritten as $(x-4)^2 + (y+7)^2 = 25$, the graph of which is a circle of radius 5. The area of the triangle formed by two radii and a chord is found by $\frac{1}{2}ab\sin\theta$ which gives $\frac{25\sqrt{2}}{4}$. The area of the 45° sector is $\frac{1}{8} \cdot 25\pi$. Subtracting gives $\frac{25}{8}(\pi 2\sqrt{2})$. The ordered quadruple is (25, 8, 2, 2).
- 2. The given equation is that of a parabola with vertex (-3, 4). The required x-coordinates are 1 and 13. The vertices of the trapezoid are (1,2), (1,6), (13,8), and (13,0). The area is $\frac{1}{2}(4+8)(13-1)=\frac{72}{2}$.
- Given ellipse $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, with $V(0, -2\sqrt{10}) \rightarrow a^2 = 40$. Substituting P(-3, -4) gives $\frac{9}{b^2} + \frac{2}{5} = 1 \rightarrow b^2 = 15$. Now F(0, f) becomes $F(0, \sqrt{40 15})$ or F(0, 5). The slope of L_1 is $\frac{0+4}{1+3} = 1$. L_1 has equation x y = 1. L_2 has slope -1 and passes through F(0, 5) so its equation is x + y = 5. $\therefore Q(3, 2)$

Round 6 - Trig and Complex Numbers

- 1. Applying the exponents of 4 and 6, the expression becomes $\left(4cis\frac{7\pi}{6}\right)\left(27cis\frac{5\pi}{3}\right)$.

 Multiplying gives $108cis\frac{17\pi}{6} = -54\sqrt{3} + 54i$.
- 2. $\cos a = 0.8, \sin a = 0.6, \cos b = 0.6, \sin b = 0.8$ $\therefore \cos(a+b) - \sin(a-b) = \left[(0.6)(0.8) - (0.6)(0.8) \right] - \left[(0.6)(0.6) - (0.8)(0.8) \right] = 0 - \left[0.36 - (0.64) \right] = 0.28 \text{ or } \frac{7}{25}.$
- 3. $\sin(x+17) = \cos(2x-23) \Leftrightarrow \sin(x+17) = \sin(90-(2x-23)) = \sin(113-2x)$. If $\sin A = \sin B$, then A and B are equal or supplementary. More specifically, A = B + 360k or A + B = 180 + 360k, for any integer k. Adding 360k generates all coterminal angles. $x + 17 = 113 2x + 360k \Rightarrow 3x = 96 + 360k \Rightarrow x = 32 + 120k \Rightarrow 32, 152, 272$ (for k = 0, 1 and 2). $(x+17) + (113-2x) = 180 + 360k \Rightarrow 130 x = 180 + 360k \Rightarrow x = -50 360k \Rightarrow 310$ (for k = -1). Thus, (A, B, C, D) = (32, 152, 272, 310).

Team Round

1. Using the double angle identity $2\sin A\cos A = \sin 2A$ multiple times, we have $2\sin x\cos x\cos 2x\cos 4x\cos 8x \ge \frac{1}{16}$ $\rightarrow \sin 2x\cos 2x\cos 4x\cos 8x \ge \frac{1}{16}$, $2\sin 2x\cos 2x\cos 4x\cos 8x \ge \frac{1}{16}$, $2\sin 2x\cos 2x\cos 4x\cos 8x \ge \frac{1}{16}$, $2\sin 4x\cos 4x\cos 8x \ge \frac{1}{8}$, $2\sin 4x\cos 4x\cos 8x \ge \frac{1}{8}$. Finally, $2\sin 8x\cos 8x \ge \frac{1}{4}$. Finally, $2\sin 8x\cos 8x \ge \frac{1}{4}$. The largest possible value of x will occur at the second of the two values for x = 3 since when $x \ge 4$ the solutions are outside the domain. When x = 3, $x = \frac{41\pi}{96}$.

Team Round - continued

- Since the equation of the parabola is $y = \frac{x^2}{4p}$ the focal point F = (0, p). The coordinates of $M = \left(a, \frac{a^2}{4p}\right)$ and since ΔFOM is isosceles with OF = OM, then $p^2 = a^2 + \frac{a^4}{16p^2}$. Thus, $a^4 + 16p^2a^2 16p^4 = 0 \rightarrow a^2 = \frac{-16p^2 \pm \sqrt{256p^4 + 64p^4}}{2} \rightarrow a^2 = \frac{8p^2\sqrt{5} 16p^2}{2} = p^2\left(4\sqrt{5} 8\right)$. Thus, $\frac{a^2}{p^2} = \boxed{4\sqrt{5} 8}$.
- 3. $xy-2y+x=2 \Rightarrow y(x-2)=2-x \Rightarrow y=\frac{2-x}{x-2}=\frac{-1(x-2)}{(x-2)}=-1$, provided $x \neq 2$. But remember there was no such restriction on the original equation! Substituting in the first equation, $x^2=2 \Rightarrow x=\pm\sqrt{2}$. However, if x=2, we have $y^2=3 \Rightarrow y=\pm\sqrt{3}$.

Thus, we have 4 ordered pairs, namely $(2,\pm\sqrt{3})$, $(\pm\sqrt{2},-1)$.

Team Round - continued

4. Assume the first sequence is $A: a, ar, ar^2,...$ and the second $B: b, bm, bm^2,...$ Then:

$$(1) a = bm^{2}$$

$$(2) ar = bm$$

$$\Rightarrow \frac{1}{r} = m \text{ and } \sum_{1}^{7} A = 8 \cdot \sum_{1}^{7} B \Leftrightarrow a \left(\frac{r^{6} - 1}{r - 1}\right) = 8b \left(\frac{m^{6} - 1}{m - 1}\right)$$

$$(3) b = ar^{2}$$

Substituting for b and m,
$$a\left(\frac{r^6-1}{r-1}\right) = 8ar^2\left(\frac{r^{-6}-1}{r^{-1}-1}\right) = 8ar^2\left(\frac{1-r^6}{r^5-r^6}\right) = 8ar^2\left(\frac{r^6-1}{r^5(r-1)}\right)$$

 $\Rightarrow 1 = \frac{8}{r^3} \Rightarrow r = 2, m = \frac{1}{2}$, but we stipulated that r < m. Our assignment of first and second was arbitrary, so we simply reverse the roles of r and m. $(r,m) = \left(\frac{1}{2},2\right)$.

Alternate Solution:

Sequence 1: 1, r, r^2 , r^3 , r^4 , r^5 ; sequence 2: r^2 , r, r^0 , r^{-1} , r^{-2} , r^{-3}

$$S_1 = \frac{r^6 - 1}{r - 1}$$
; $S_2 = \frac{\frac{r^6 - 1}{r^4}}{1 - \frac{1}{r}} = \frac{r^6 - 1}{r^4} \cdot \frac{r}{r - 1}$. Now $\frac{r^6 - 1}{r - 1}$ cancels leaving $1 = \frac{8}{r^3} \rightarrow r = 2$.

- 5. There are $_{10}C_3 = \frac{10!}{3! \cdot 7!} = 120$ possible sets of triples. Given the particular numbers in S, the only sums divisible by 10 are 40 and 50. Here are the sets that sum to 40: $\{10,11,19\}$, $\{10,12,18\}$, $\{10,13,17\}$, $\{10,14,16\}$, $\{11,12,17\}$, $\{11,13,16\}$, $\{11,14,15\}$ and $\{12,13,15\}$. The sets that sum to 50 are: $\{13,18,19\}$, $\{14,17,19\}$, $\{15,16,19\}$ and $\{15,17,18\}$. There are a total of 12 sets, making the probability that the sum would be divisible by 10 equal to $\frac{12}{120} = \frac{1}{10}$.
- 6. The general term of the binomial expansion is $C_k^{12}(x^3)^{(12-k)}x^{-2k} = C_k^{12}x^{(36-5k)}$. So we have 36-5k=11, and 5k=25, so k=5. Then P=C(12,5)=C(12,7), and n=36-5(7)=1. $P=\frac{12\cdot11\cdot10\cdot9\cdot8}{5\cdot4\cdot3\cdot2\cdot1}=(11)(9)(8)=792$. So (P,n)=(792,1).